Muon g-2/EDM at J-PARC

October 20, 2022 PSI2022 Tsutomu Mibe (KEK)

12 134

Current status and J-PARC projection

2

Muon EDM

e+

Three steps of g-2 & EDM measurement

1. Prepare a polarized muon beam.

- 2. Store in a magnetic field (muon's spin precesses)
- 3. Measure decay positron

 π^+

Spin precession of muon

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

Spin precession vector w.r.t momentum :

nomentun

Conventional muon beam

Source of systematic uncertainties

Muon beam at J-PARC

Re-accelerated thermal muon

Experimental sequence

cooling

Muon g-2/EDM experiment at J-PARC

Muon storage magnet and detector 11

M. Abe et. al., NIM A 890, 51 (2018)

Simultaneous measurements: g-2, EDM

Expected time spectrum of e^+ in $\mu \rightarrow e^+\nu\nu$ decay

Comparison of g-2 experiments 13

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

	BNL-E821	Fermilab-E989	Our experiment	
Muon momentum	3.09 GeV/c		300 MeV/c	
Lorentz γ	29.3	5	3	
Polarization	100%	50%		
Storage field	B = 1.4	B = 3.0 T		
Focusing field	Electric qua	Very weak magnetic		
Cyclotron period	149 r	7.4 ns		
Spin precession period	4.37 μ	us	$2.11 \ \mu s$	
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	5.7×10^{11}	
Number of detected e^-	3.6×10^{9}	—	—	
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb	
(syst.)	280 ppb	100 ppb	<70 ppb	
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \mathrm{cm}$	—	$1.5 \times 10^{-21} e \cdot \mathrm{cm}$	
(syst.)	$0.9 \times 10^{-19} e \cdot \mathrm{cm}$	—	$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$	

Completed Running

In preparation

The collaboration

The 24th J-PARC muon g-2/EDM collaboration meeting, June 8-10, 2022

Beam power 1MW Rep. Rate 25 Hz

Rapid Cycle Synchrotron (3 GeV)

Neutrino exp. facility

Materials and Life science experimental Facility

MLF

LINAC

(400 MeV).

Main Ring (30 GeV)

-P/

proton muon neutron neutrino

Hadron exp. Hall

g-2/EDM

Construction of surface muon beamline (H-line)

Prog. Theor. Exp. Phys. 2018, 113G01

First beam to H1 area (Jan 15, 2022) 17

Extension of H-line

18

Prog. Theor. Exp. Phys. 2018, 113G01

Assembled radiation shields for extension (Oct 15, 2022)

Muon source developments

Muonium yield measured at TRIUMF

19

Sufficient efficiency to achieve Δa_{μ} ~450ppb

Muon source developments

Schemes of ionization

First-ever demonstration of Mu ionization via 1S-2P from Silica aerogel

20

Muon source developments

Schemes of ionization

Ionization test via 1S-2S at S-line

21

in collaboration with the Mu 1S-2S spectroscopy group

Muon source + LINAC

First-ever demonstration of thermal muon acceleration is in preparation Next: beam time approved in 2023

muon

The cavity was manufactured in March 2022

A paper was submitted to PRAB

Frequency shift ($\Delta f/f$)

data. - sim. (field error) [%]

EM fields are consistent with simulation within a few percent To be used in the acceleration to 4.3 MeV in 2024

Disk-And-Washer (DAW) type cavity

Washer

Assembly with brazing

The cavity design completed. Fabrication started. Next: build a complete module and test

10 z (m)

 $\epsilon_{n, ms}$ (π mm mrad)

0.3 0.2

0.1

0.4 **x**

The acceleration gradient increases from

12 MeV/m \rightarrow 20 MeV/m (at 40 MW)

The cavity parameters were optimized. Next: fabrication of a prototype

Muon beam injection

H. linuma et al., Nucl. Instr. And Methods. A 832, 51 (2016)

Muon beam injection

Rotating quadrupole magnet for injection beamline

Spiral Injection Test Experiment with electron beam

Electrons successfully injected. Next step: demonstration of storage by a pulsed kicker

Muon storage magnet and detector 30

M. Abe et. al., NIM A 890, 51 (2018)

Magnet shimming test

US-Japan cross calibration campaign 32

PRECISION CROSS-CALIBRATION OF THE NMR CALIBRATION PROBES FOR THE J-PARC MUON G-2/EDM, J-PARC MUSEUM, AND FNAL MUON G-2 EXPERIMENTS AT THE ANL 4T MAGNET FACILITY

The measurement of the muon anomalous magnetic moment a_u is a precision test of the Standard Model and an indirect search for New Physics. The Muon g-2 (E989) collaboration at Fermilab has published the most precise measurement of the muon anomalous magnetic moment with an uncertainty of 460 ppb in 2021, leading to a world average that deviates by 4.2 standard deviations from the Standard Model prediction provided by the Muon g-2 Theory Initiative

The complementary Muon g-2/EDM experiment (E34) at Japan Proton Accelerator Research Complex (J-PARC) is under construction.

$$a_{\mu} = \frac{\omega_a}{[\widetilde{\omega}'_p(T_r)]} \frac{\mu'_p(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

Both experiments use nuclear magnetic resonance (NMR) probes to measure the magnetic field in terms of the precession frequency of the protons. Goal: cross-calibration of the NMR calibration probes on the 30 ppb level at 1.45T, 1.7T, and 3.0T

Raw difference measured at the

Correction terms from material

 $\delta_{\ell_{max}}$), and misalignment (δ_{max})

The cross-calibration at 1.7T is motivated by the

Microwave (MuSEUM). It yield a consistent

The same facility is used to cross-calibrate the

FNAL calibration probe with ³He NMR probe developed by the University of Michigan

difference of ~60ppb.

J-PARC Muonium Spectroscopy Experiment Using

13 12 13 21 22 23 24 25 26 Temperature dependent corrections

ANT Charact

- 4-Tesla magnet facility at Argonne National Laboratory (Oxford OR66) Very stable and highlight uniform field due to passive and active shimming,
- local gradients below 2 ppb/mm Passive shimming based on single-value decomposition from field maps on a 50-cm diameter sphere obtained with Metrolab cameras

- Cross-calibration at 1.45T and 1.7T with uncertainties of ~17nnh
- The 3T calibration was delayed because of COVID
- The cross-calibration campaigns at 1.45T and at 1.7T yield a ~60ppb difference between the two
- probes (after unblinding)
- Thorough investigations and correction
- reevaluations have not led to any indication of the source of the discrepancy yet
- Next Step: Cross-calibration at 3T in October 2022

same position from swapping the from diamagnetic shielding δ^{T} and probes back and forth inside the bulk magnetic susceptibility δ^l magnet at 1.45T 58.3 ± 0.7 ppb 65.6 ± 0.5 ppb total 63.0 ± 0.4 ± 1 to to to the to to the to the tot 45 11 12 13 21 22 23 24 25 28

ABA group Difference of the shielded proton effects (δ_s , δ_{cc} , δ_{stage}), water sample (δ_n) , radiation damping (δ_{RD}) , probe precession frequency $\omega_{p'}$ between the FNAL and the J-PARC calibration tune and frequency extraction (δ_{tune} probes at 1.45T.

- H. Yamaguchi et al., "Development of a CW-NMR Prohe for Precise Measurement of Absolute Magnetic Field" in IEEE Transactions on Applied Superconductivity, vol. 29, no. 5, pp. 1-4, Aug. 2019, Art no. 9000904, doi: 10.1109/
- TASC.2019.2895360. D Flav et al "High-accuracy absolute
- magnetometry with application to the Fermilab
- Muon g-2 experiment", JINST 16 P12041, 2021. M. Faroog et al., "Absolute Magnetometry with
 - 3He", Phys. Rev. Lett. 124, 223001, 2020.

Positron tracking detector

Test with prototype boards

Intended schedule and milestone

35

	2021	2022	2023	2024	2025	2026	2027 beyor	7 and nd
H2 area		Shields	Magnets				ing	
H line exp. bldg		Eng. design of bldg. Re-location Exterior construction bldg. construction				mission	Data taking	
Components	4	construction			Installation	Com		

Summary

36

- J-PARC g-2/EDM experiment uses new method
 - Cooling + acceleration of positive muons
 - Storage in a compact ring
 - Complementary to magic gamma experiments
- Surface muon beam delivered on Jan. 2022.
- Expected date of data taking from 2027.

Achievements in the past

The collaboration received a <u>new Grant-in-Aids</u> for 6 years (2020-2025) for construction of detector

system and other key components

g-2 and muonium experiments 38

Inspired by K. Jungmann

g-2 and muonium experiments 39 Inspired by K. Jungmann at J-PARC Fermilab E989

MA Propes

Lead by K. Shimomura (IMSS/KEK)

POSITO Ongoing **MuSEUM(J-PARC)**

Mu HFS

Three independent experiments have launched at J-PARC for improved measurements.

Setting up the Mu 1S-2S ionization experiment

Technical

synergies

KEK, Tsukuba Campus To be transported to J-PARC MLF S-line in summer 20.

J-PARC g-2/EDM (preparation)

Mu-MASS(PSI), new exp.(J-PARC) Mu 1S-2S

In preparation

Lead by S. Uetake (Okayama)

Experimental areas for experiments 40

Extension for g-2/EDM to be constructed in FY2022

H1 area for Mu-HFS (MuSEUM) Beam delivered in Jan 2022

> S2 area for muon cooling tests and Mu 1S-2S Beam delivered in Jan 2022

Statistical and systematic uncertainties

41

Prog. Theor. Exp. Phys. 2019, 053C02

Summary of statistical uncertainties

	Estimation
Total number of muons in the storage magnet	5.2×10^{12}
Total number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
Uncertainties on EDM [$10^{-21} e \cdot cm$]	1.5 (stat.)
	0.36 (syst.)

Estimated systematic uncertainties on a_{μ}

Anomalous spin precession (ω_a) N		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

J-PARC Muon Science Facility (MUSE)

