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Baryon asymmetry of the Universe
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CP violation in the Standard Model

Weak sector: CKM matrix

Strong sector: QCD-Lagrangian, θ

Non-zero EDM direct probe of beyond 
standard model physics

University of Bern

Warning: Classical 
representation



Neutron EDM sensitivity over time
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σdn < 1.8 × 10−26e ∙ cm 90% C. L. [1]

[1] C. Abel, et al., Phys. Rev. Lett. 124, 081803 (2020)
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Ultra cold neutrons (UCN)
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Ramsey’s method of separated oscillatory fields
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Polarized
Neutron

RF Spin Flip Free Precession RF Spin Flip Final Spin State

t

𝐵𝑅𝐹 𝐵𝑅𝐹

𝐵0

𝜔0 = −𝛾𝑛𝐵0

University of Bern

~200 s~2 s ~2 s
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Polarized
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RF Spin Flip Free Precession RF Spin Flip Final Spin State
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Ramsey’s method of separated oscillatory fields
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Res. freq = working points



PSI UCN source
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7 mProton beam: 590 MeV, 2.2 mA 
on spallation target

Pulsed for 8 s every 5 minutes

Neutrons moderated to UCN

Extracted to experiment

University of Bern



PSI UCN source
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Update on the UCN source at PSI 
Cornelis Doorenbos

7 mProton beam: 590 MeV, 2.2 mA 
on spallation target

Pulsed for 8 s every 5 minutes

Neutrons moderated to UCN

Extracted to experiment

University of Bern



Experimental setup – n2EDM
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Active magnetic shield (AMS)

Noisy magnetic environment

Active compensation coils: 3 
homogenous fields, 5 first order 
gradients

50 km of cables

7 kW (typ. 2 kW) power

Approx. 1 μT homogeneity on MSR
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Next Generation Active Magnetic 
Shielding for n2EDM experiment at PSI 

Vira Bondar

University of Bern



UCN Switch
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UCN guides
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USSA/UCN detectors

USSA for each UCN volume

Simultaneous neutron spin discrimination

UCN counters: fast gaseous detector

Gas mixture of 3He and CF4

Process: neutron capture produces proton 
and triton, creating scintillation of CF4
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Magnetically shielding room (MSR)

6 layers mu-metal

1 layer aluminium

Internal shielded volume ~ 25 m3

Remanent magnetic field < 100 pT @ 
central 1 m3

87 openings, largest 220 mm diameter

Door clearance 2 m x 2 m

Shielding factor 100,000 @ 0.01 Hz[2]
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[2] N.Ayres, et al., Review of Scientific Instruments 93, 095105 (2022)



Coil system

22PSI 2022

Installed on inner mu-metal layer

B0 coil + 56 trim coils + 7 gradient coils

8 RF coils on vacuum tank

B0 = 1 μT

Field uniformity < 170 pT

Top-bottom resonance matching             
< 0.6 pT/cm

University of Bern



Coil system
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Coil system
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Mapping of the magnetic field in 
the n2EDM experiment 

Kseniia Svirina



Vacuum tank
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Non-magnetic aluminium vacuum 
tank

Internal volume: 1.6 m x 1.6 m x 1.2 m

Ultimate pressure: ~10−6 mbar

University of Bern



Cesium magnetometers 

Optically pumped magnetometers

114 Cs magnetometers: position optimize 
for extraction of gradient components 

Goal accuracy < 5 pT

Position placement ± 0.5 mm

Characterise in 4 layer mu-metal shielding
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Mercury magnetometers

Co-magnetometer measures volume 
averaged magnetic field

Hg199 polarized via optical pumping of 
the 61S0 → 63P1

PMT measures intensity modulation of 
a horizontal light beam
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Mercury magnetometers

Co-magnetometer measures volume 
averaged magnetic field

Hg199 polarized via optical pumping of 
the 61S0 → 63P1

PMT measures intensity modulation of 
a horizontal light beam
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The mercury co-magnetometer 
in the n2EDM experiment 

Wenting Chen



Ramsey chamber electrodes
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1000 mm

University of Bern



Electrode magnetic scanning at PTB
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Magnetic field [pT]



Ramsey chamber
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1000 mm

180 mm

University of Bern



Conclusions

n2EDM representants next generation experiment

Sensitivity goal improvement of order magnitude

Commissioning of the experiment currently underway

Plan for first UCN’s with Ramsey apparatus in the next year
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Thanks for your attention
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The collaboration
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Previous experiment – nEDM
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Ramsey’s method of separated oscillatory fields
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Frequency (Hz)
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Ramsey’s method of separated oscillatory fields
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Ramsey’s method of separated oscillatory fields
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nEDM data sequence

40PSI 2022University of Bern



Experimental comparison
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n2EDM systematic effects
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Magnetic field requirements
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Experimental setup – n2EDM
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MSR shielding factor
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[2] N.Ayres, et al., Review of Scientific Instruments 93,

095105 (2022)



Polarizing magnetic
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Polarizing magnetic
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UCN switch
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UCN detectors
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Mercury magnetometers
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Typical mercury signal
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UCN Switch
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Finished ground electrode
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DLC coated electrode

56PSI 2022University of Bern



Magnetic restrictions

Overview n2EDM 57

•Hg and UCN occupy the same volume

•As the Hg is thermal, it can sample many more gradient fields then the UCN

•This leads to Hg induced false EDM on the neutrons:

•These gradient fields are characterised, offline and online, but puts limits on induced dipole 
fields of nearby components

•Hence the Ramsey chamber requires dipole field < 20 pT @ 5 cm

𝑑𝐻𝑔→𝑛
𝑓𝑎𝑙𝑠𝑒
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University of Bern



Magnetic scanning @ PTB
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After electrode cleaning

Transportation to PTB 

Approximate timeline is for March/April

Followed by DLC coating in Dortmund

Electrodes then returned to further scanning

University of Bern



HV electrode – front
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Magnetic field [pT]

10 pTpp

Dipole degaussed: 10 pT
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Dipole: < 4 pT

PSI 2022University of Bern

HV electrode – back
Magnetic field [pT]



G2 electrode – back
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Dipole: < 6 pT

Magnetic field [pT]
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G2 electrode – front
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Magnetic field [pT]
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Dipole: < 30 pT



G1 electrode – back 
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Dipole: < 26 pT

Magnetic field [pT]



G1 electrode – front 
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Dipole: < 11 pT

Magnetic field [pT]



Caesium magnetometers
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FDR – precession chamber 68

Overall design

Universität Bern



Insulator ring

500 mm insulator rings produced

These have co-centricity of inner and outer 
surfaces – 0.06 mm

Magnetic scans show one spot ~3 pT, overall 
less then 1.5 pT

Soon begin production of 800 mm rings
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HV feedthrough
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180 mm

Prototype constructed

Tested up to +/- 180 kV

Pressure test: <10−5mbar

Feedthrough -> electrode connection is still in design, 
however, prototypes tested

Connector to be made flexible

University of Bern


