The Search for Charged Lepton-Flavour Violation with the Mu3e Experiment

Frederik Wauters on behalf of the Mu3e collaboration Johannes Gutenberg University Mainz

CLFV & $\mu^+ \rightarrow e^+ e^+ e^-$

 \Box

Charged Lepton Flavour Violation and the Standard Model

- Neutrino masses/oscillations have established LFV in the SM+
- **Charged** LFV has not yet been observed \rightarrow search for beyond SM physics
- Lepton decays are a clean probe, i.e. free of SM background.
- Muons hit the sweet spot between sensitivity and availability. Note there are also $\tau \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow \mu\mu\mu$ searches at e.g. Belle II <u>arXiv:2203.14919</u>
- Three golden muon channels:
 - $\mu^+ \rightarrow e^+ \gamma$ $MEG < 4 \cdot 10^{-13}$
 - $\Box \quad \mu^{-}N \rightarrow e^{-}N$ $\Box \quad \mu^+ \rightarrow e^+ e^+ e^-$

SUNDRUMII < 7 · 10⁻¹³ ⇒ SINDRUM < $1 \cdot 10^{-12}$

- $MEGII < 5 \cdot 10^{-14}$ \Rightarrow
 - DeeMee, Mu2e, COMET < 10⁻¹⁶
 - $Mu3e < 2 \cdot 10^{-15}$ (1 \cdot 10^{-16} in a second phase)

$CLFV \And \mu^+ \rightarrow e^+ e^+ e^-$

Charged Lepton Flavour Violation and the Standard Model

- □ Neutrino masses/oscillations have established LFV in the SM+
- $\Box \quad \textbf{Charged LFV has not yet been observed} \rightarrow \textbf{search for beyond SM physics}$
- Lepton decays are a clean probe, i.e. free of SM background.
- □ Muons hit the sweet spot between sensitivity and availability. Note there are also $\tau \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow \mu\mu\mu$ searches at e.g. Belle II <u>arXiv:2203.14919</u>
- Three golden muon channels:

μ⁺→e⁺γ	MEG < 4·10 ⁻¹³	ee
µ⁻N→e⁻N	SUNDRUMII < 7 · 10 ⁻¹³	⊳
u ⁺ →e ⁺ e ⁺ e ⁻	SINDRUM < $1 \cdot 10^{-12}$	ee

- DeeMee, Mu2e, COMET < 10⁻¹⁶
- $Mu3e < 2.10^{-15}$ (1.10^{-16} in a second phase)

$\mu^+ \rightarrow e^+ e^+ e^- \&$ the Mu3e experiment

Detecting $\mu^+{\rightarrow} e^+e^+e^-$ for muon decay at

rest:

- → Common vertex
- → Time coincident

- → Mono-energetic e^+ and γ
- → back-back coincidence
- → Mono-energetic e⁻
- → No coincidence

$\mu^+ \rightarrow e^+ e^+ e^- \&$ the Mu3e experiment

 \succ

 \succ

 \succ

Pulsea

nuons

- □ IT uniform magnetic field
- □ 2 layer vertex detector
- $\Box \quad 2 \text{ outer pixel layers} \rightarrow 3 \text{ hits to start a track} \quad \text{see our dedicated fast track fitter: } \underline{\text{https://arxiv.org/abs/1606.04990}}$
- **G** Fibre detector for the track direction, i.e. differentiate e+ from e-

Mu³e Detectors

Lightweight <u>pixel tracker</u> build from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) called MuPix

time resolution / ns

and test beams

A decade of detector development

Prototyping MuPiX ... $\rightarrow 9$

1.2V

&

1.8V

Full Chip: MupiX10 & MuPix11 (= debugged MuPix10)

10

Mu3e Detectors

Mu3e Detectors

Timing detectors

- □ 12 ribbon 3 layer scintillating fibre detector surrounding the vertex detector
- Highly granular tile detector under the recurl stations

All fibre and pixel modules are spring loaded to compensate for thermal expansions.

Both detectors use a custom readout chip called *MuTrig*

6272 tiles with plenty of light give us ca. 70 ps time resolution

Mu3e DAQ

Reminder: the Mu3e event topology does not allow for a RO trigger, every $e^{+/-}$ track could potentially be part of a $\mu^+ \rightarrow e^+e^+e^-$ event. Only the kinematics of the combined final state positrons/electron gives us an event selection criteria.

Mu3e = lightweight and fast Michel electron tracker + high throughput online reconstruction & selection DAQ system

Mu3e DAQ

Mu3e sensitivity

Based on full Monte Carlo simulation of the experiment, an analytical track fitter, and a lot of detector R&D, we claim that:

The <u>Mu3e Phase I</u> detector can achieve a $2 \cdot 10^{-15}$ SES on $\mu^+ \rightarrow e^+ e^+ e^-$

A. Bravar[®], K. Briggl^{®44}, D. vom Bruch^{®10}, A. Buonaura[®], F. Cadoux[®], C. Chavez Barajas[®], H. Chan[†], K. Clark[®], B. Cosko[†], S. Corradi^{®4}, A. Damuanaura[®], V. Damata[®], S. Dittmaiar[†]

Mu3e detector construction & commissioning

All sensors/components work to specs

 \rightarrow We have to build a very compact/complex detector (+ services + DAQ)

Mu3e detector construction & commissioning

Demonstrator vertex & SciFi detector: 2022 and 2021 commissioning runs @ PSI

Mu3e detector construction & commissioning

Demonstrator vertex & SciFi detector: 2022 and 2021 commissioning runs @PSI

Mu3e services

Mu³e services

DC-DC converters that work in a IT magnetic field

Mu3e services

Mu3e services

Mu3e phase I

Mu3e phase I

Mu3e phase II = S.E.S. of 10^{-16}

Accepting >10⁹ muon per second on target comes with challenges

- **Getting** >10⁹ muons per second on target
- □ Processing >10⁹ muons per second
 - \rightarrow Many DAQ components have phase II capabilities
 - Raw bandwidth
 - I0⁹ fits per second per GPU
- Needs fast & granular pixel detectors to reduce combinatorics with time and vertex cuts.
- Maintain or even improve Momentum resolution to deal with internal conversion background
- Smarter selection cuts to deal with combinatorics

PHYSIKALISCHES I N S T I T U T

KIRCHHOFF-INSTITUT FÜR PHYSIK

https://www.psi.ch/en/mu3e

Extra's

Other Exotic Physics with Mu3e Familons

- Search for $\mu^+
 ightarrow e^+ X^0$ decays
- Ex: Familon

(Goldstone boson from spontaneously broken flavour symmetry, Wilczek, PRL 49 (1982) 1549)

- Challenge: single-e events are not saved
- Histogramming on filter farm

Table 22.1

Efficiency of the various reconstruction and analysis steps.

Step	Step efficiency	Total efficiency
Muon stops	100%	100%
Geometrical acceptance, short tracks	38.1%	38.1%
Geometrical acceptance, long tracks	68.0%	25.9%
Short track reconstruction	89.5%	34.1%
Long track reconstruction ^a	67.2%	17.4%
Recurler rejection/Vertex fit convergence	99.4%	17.3%
Vertex fit $\chi^2 < 15$	91.3%	15.8%
CMS momentum $< 4 \mathrm{MeV/c}$	95.6%	15.1%
$m_{ee,low} < 5 \mathrm{MeV/c^2}$ or $> 10 \mathrm{MeV/c^2}$	98.0%	14.9%
$103 \mathrm{MeV/c^2} < m_{rec} < 110 \mathrm{MeV/c^2}$	97.0%	14.4%
Timing	90.0%	13.0%

^aNote that the efficiency of this step is quoted relative to the acceptance for long tracks.

High Rate & Continuous Readout

MuPix series is the first monolithic pixel sensor with continuous sampling and readout!

