Hadronic contributions to the

anomalous magnetic moment of the muon

b

Martin Hoferichter

UNIVERSITÄT BERN Albert Einstein Center for Fundamental Physics,

Institute for Theoretical Physics, University of Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Oct 19, 2022

Physics of fundamental Symmetries and Interactions - PSI2022

Villigen PSI

1= nac

Dipole moments: definition

$$\begin{aligned} \mathcal{H} &= -\mu_{\ell} \cdot \mathbf{B} - \mathbf{d}_{\ell} \cdot \mathbf{E} \\ \mu_{\ell} &= -g_{\ell} \frac{e}{2m_{\ell}} \mathbf{S} \qquad \mathbf{d}_{\ell} = -\eta_{\ell} \frac{e}{2m_{\ell}} \mathbf{S} \qquad \mathbf{a}_{\ell} = \frac{g_{\ell} - 2}{2} \end{aligned}$$

• Anomalous magnetic moments Fan et al. 2022, Bennett et al. 2006, Abi et al. 2021

$$a_e^{\exp} = 1,159,652,180.59(13) \times 10^{-12}$$
 $a_{\mu}^{\exp} = 116,592,061(41) \times 10^{-11}$

Electric dipole moments Andreev et al. 2018, Bennett et al. 2009

$$|d_e| < 1.1 \times 10^{-29} e \,\mathrm{cm}$$
 $|d_{\mu}| < 1.5 \times 10^{-19} e \,\mathrm{cm}$ 90% C.L.

• Not much known about τ dipole moments

 \hookrightarrow possible strategy via $e^+e^- \rightarrow \tau^+\tau^-$ at Belle II with polarized e^-

Crivellin, MH, Roney 2021, Accardi et al. 2205.12847

Recent news for the electron

Current status

$$\begin{split} &a_e^{\text{exp}} = 1,159,652,180.59(13)\times 10^{-12}\\ &a_e^{\text{SM}}[\text{Rb}] = 1,159,652,180.25(1)_{5\text{-loop}}(1)_{\text{had}}(9)_{\alpha(\text{Rb})}\times 10^{-12}\\ &a_e^{\text{SM}}[\text{Cs}] = 1,159,652,181.61(1)_{5\text{-loop}}(1)_{\text{had}}(23)_{\alpha(\text{Cs})}\times 10^{-12} \end{split}$$

Tensions:

- Among α measurements: Berkeley 2018 vs. LKB 2020: 5.4 σ ; LKB 2011 vs. LKB 2020: 2.4 σ
- With a^{exp}_e: +2.1σ [Rb], -3.9σ [Cs]

-

Recent news for the electron

Current status

$$\begin{split} &a_e^{\text{exp}} = 1,159,652,180.59(13)\times 10^{-12}\\ &a_e^{\text{SM}}[\text{Rb}] = 1,159,652,180.25(1)_{5\text{-loop}}(1)_{\text{had}}(9)_{\alpha(\text{Rb})}\times 10^{-12}\\ &a_e^{\text{SM}}[\text{Cs}] = 1,159,652,181.61(1)_{5\text{-loop}}(1)_{\text{had}}(23)_{\alpha(\text{Cs})}\times 10^{-12} \end{split}$$

Bottlenecks

- Exp: discrepancy between Rb and Cs measurements of $\boldsymbol{\alpha}$
- Th: 5-loop QED coefficient, 4.8σ tension between Aoyama, Kinoshita, Nio 2019, Volkov 2019

Status for the muon

Experiment

- BNL confirmed by Fermilab Run 1
- Run 2+3 in spring 2023
- Will also produce EDM limits

Theory

- 4.2 σ if HVP from $e^+e^- \rightarrow$ hadrons data
- e^+e^- data in 2.1 σ tension with BMWc
- Now: partial confirmation by other collaborations

This talk: more on theory status and prospects

M. Hoferichter (Institute for Theoretical Physics)

三日 のへの

• Fermilab muon *g* – 2 experiment:

↔ Simon Corrodi (Tu 11:00, poster), Martin Fertl (poster), Tianqi Hu (poster), Jun Kai Ng (poster)

• J-PARC muon *g* – 2/EDM experiment:

← Tsutomu Mibe (Th 9:30)

• PSI muon EDM experiment:

← Timothy Hume (poster), Jun Kai Ng (poster), Philipp Schmidt-Wellenburg (poster)

• Muon EDM theory:

← Andreas Crivellin (Th 9:00), George Hou (poster)

• Muon g - 2 theory:

← Gurtej Kanwar (poster)

1= 990

Anomalous magnetic moments in the SM

• SM prediction for $(g-2)_{\ell}$

$$a_{\ell}^{\mathrm{SM}} = a_{\ell}^{\mathrm{QED}} + a_{\ell}^{\mathrm{EW}} + a_{\ell}^{\mathrm{had}}$$
 $a_{\ell}^{\mathrm{had}} = a_{\ell}^{\mathrm{HVP}} + a_{\ell}^{\mathrm{HLbL}}$

- For the muon:
 - QED and electroweak contributions under control
 - Error budget Aoyama et al. 2020

 $\begin{aligned} a^{\text{SM}}_{\mu}[e^+e^-] &= 116,591,810(40)_{\text{HVP}}(18)_{\text{HLbL}}(1)_{\text{EW}}(0)_{\text{QED}}[43]_{\text{total}} \times 10^{-11} \\ a^{\text{exp}}_{\mu} &= 116,592,061(41) \times 10^{-11} \end{aligned}$

 Dominant errors from hadronic vacuum polarization (HVP) and hadronic light-by-light scattering (HLbL)

M. Hoferichter (Institute for Theoretical Physics)

Hadronic contributions to $(g - 2)_{\mu}$

Muon g - 2 Theory Initiative

- Maximize the impact of the Fermilab and J-PARC experiments
 - Quantify and reduce the theory uncertainties on the hadronic corrections
 - Summarize the theory status and assess reliability of uncertainty estimates
- Workshops and reports: https://muon-gm2-theory.illinois.edu/
 - First plenary workshop @ Fermilab: 3–6 June 2017
 - HVP workshop @ KEK: 12-14 Feb 2018
 - HLbL workshop @ UConn: 12-14 Mar 2018
 - Second plenary workshop @ Mainz: 18–22 June 2018
 - Third plenary workshop @ Seattle: 9–13 Sep 2019
 - White paper (WP) Phys. Rept. 887 (2020) 1: "The anomalous magnetic moment of the muon in the SM"
 - Lattice HVP workshop (virtual): 16–20 Nov 2020
 - Fourth plenary workshop @ KEK (virtual): 28 June-2 July 2021
 - 2022 Snowmass Summer Study, 2203.15810: "Prospects for precise predictions of a_μ in the SM"
 - Fifth plenary workshop @ Edinburgh: 5-9 Sep 2022
 - Partial WP update planned prior to Run 2+3 announcement
 - Sixth plenary workshop @ Bern: early Sep 2023
 - Seventh plenary workshop @ KEK: summer 2024

三日 のへの

For more details of recent developments, see website of the Fifth Plenary Workshop of the Muon g - 2 Theory Initiative at the Higgs Centre in Edinburgh

 \hookrightarrow https://indico.ph.ed.ac.uk/event/112/

M. Hoferichter (Institute for Theoretical Physics)

Hadronic contributions to $(g - 2)_{\mu}$

Hadronic light-by-light scattering: status

- Good agreement between lattice QCD and phenomenology at $\simeq 20 \times 10^{-11}$
- Need another factor of 2 for final Fermilab precision work in progress

Hadronic vacuum polarization

- General principles yield direct connection with experiment
 - Gauge invariance

$$\overset{k,\,\nu}{\cdots} = -i(k^2g^{\mu\nu} - k^{\mu}k^{\nu})\Pi(k^2)$$

Analyticity

$$\Pi_{\text{ren}} = \Pi(k^2) - \Pi(0) = \frac{k^2}{\pi} \int\limits_{4M_\pi^2}^{\infty} \mathrm{d}s \frac{\mathrm{Im}\,\Pi(s)}{s(s-k^2)}$$

Unitarity

$$\operatorname{Im}\Pi(s) = -\frac{s}{4\pi\alpha}\sigma_{\operatorname{tot}}(e^+e^- \to \operatorname{hadrons}) = -\frac{\alpha}{3}\frac{R_{\operatorname{had}}(s)}{R_{\operatorname{had}}(s)}$$

Master formula for HVP contribution to a_{μ}

$$a_{\mu}^{ extsf{HVP,LO}} = \left(rac{lpha m_{\mu}}{3\pi}
ight)^2 \int_{\mathcal{S}_{ extsf{thr}}}^{\infty} ds rac{\hat{K}(s)}{s^2} R_{ extsf{had}}(s)$$

M. Hoferichter (Institute for Theoretical Physics)

Hadronic vacuum polarization from e^+e^- data

- Decades-long effort to measure e⁺e⁻ cross sections
 - cross sections defined photon-inclusively
 - \hookrightarrow threshold $s_{
 m thr} = M_{\pi^0}^2$ due to $\pi^0 \gamma$ channel
 - up to about 2 GeV: sum of exclusive channels
 - above: inclusive data + narrow resonances + pQCD

• Tensions in the data: most notably between KLOE and BaBar 2π data

 \hookrightarrow extensive discussion in WP of current status and consequences

Cross checks from analyticity and unitarity

• For "simple" channels $e^+e^- \rightarrow 2\pi$, 3π can derive form of the cross section from general principles of QCD (analyticity, unitarity, crossing symmetry)

 \hookrightarrow strong cross check on the data sets (covering about 80% of HVP)

 Uncovered an error in the covariance matrix of BESIII 16 (now corrected), all other data sets passed the tests

HVP from e^+e^- data

$$\begin{split} a_{\mu}^{\text{HVP},\text{LO}} &= 6931(28)_{\text{exp}}(28)_{\text{sys}}(7)_{\text{DV+QCD}} \times 10^{-11} = 6931(40) \times 10^{-11} \\ a_{\mu}^{\text{HVP}} &= 6845(40) \times 10^{-11} \end{split}$$

- DV+QCD: comparison of inclusive data and pQCD in transition region
- Sensitivity of the data is better than the quoted error
 - \hookrightarrow would get 4.2 $\sigma \to$ 4.8 σ when ignoring additional systematics
- Systematic effect dominated by [fit w/o KLOE fit w/o BaBar]/2
- a_{μ}^{HVP} includes NLO Calmet et al. 1976 and NNLO Kurz et al. 2014 iterations

New data since WP20

- New data from SND experiment not yet included in WP20 number
 - \hookrightarrow lie between BaBar and KLOE, some tension with analyticity $_{\text{Colangelo et al. 2022}}$
- More $\pi\pi$ data to come from: CMD3, BESIII, BaBar, Belle II
- New data for 3π: BESIII, BaBar
- New data on inclusive region: BESIII (slight tension with pQCD)
- **MUonE project**: space-like HVP from μe scattering

M. Hoferichter (Institute for Theoretical Physics)

Hadronic contributions to $(g - 2)_{\mu}$

Radiative corrections

- FAQ: scalar-QED approximation insufficient for $e^+e^- \rightarrow \pi^+\pi^-$?
 - \hookrightarrow actually, sQED times pion form factor (FsQED)
- NLO corrections for ISR completed Campanario et al. 2019: small
- Test case: forward-backward asymmetry (C-odd)
- Large corrections found in GVMD model Ignatov, Lee 2022, reproduced dispersively
 - \hookrightarrow effect comes still from infrared enhanced contributions
- Relevant effects for the C-even contribution? unlikely, but work in progress.

HVP from lattice QCD

$$\begin{aligned} a_{\mu}^{\text{HVP, LO}} &= a_{\mu, \text{ conn}}^{\text{HVP, LO}}(ud) + \sum_{q=s,c,b} a_{\mu, \text{ conn}}^{\text{HVP, LO}}(q) + a_{\mu, \text{ disc}}^{\text{HVP, LO}} + a_{\mu, \text{ IB}}^{\text{HVP, LO}} \\ &= 7116(184) \times 10^{-11} \end{aligned}$$

- Basic differences to data-driven approach:
 - Calculation in space-like, not time-like kinematics
 - Decomposition by flavor, not hadronic channel
 - Disconnected diagrams and isospin breaking calculated as corrections
- WP discussion includes:
 - Detailed discussion of computational strategy (e.g., schemes for isospin breaking)
 - Comparisons of calculations available as of the deadline 31 March, 2020
 - Averages of subquantities and total HVP

= nar

HVP from lattice QCD: WP averages

Oct 19, 2022

Full calculation and windows

• BMWc still only complete calculation at similar level of precision as e^+e^- data

 $a_{\mu}^{\mathsf{HVP,LO}}[e^+e^-] = 6931(40) imes 10^{-11}$ $a_{\mu}^{\mathsf{HVP,LO}}[\mathsf{BMWc}] = 7075(55) imes 10^{-11}$

 \hookrightarrow globally 2.1 σ

- Windows in Euclidean time RBC/UKQCD 2018
 - Intermediate window less affected by statistical noise and discretization effects
 - Comparison among lattice calculations
 - Comparison with e⁺e⁻ data

= 990

e^+e^- vs. lattice for intermediate window

RBC/UKQCD 2022 supersedes RBC/UKQCD 2018

ETMC 2022 supersedes ETMC 2021

FNAL/HPQCD/MILC 2022 agrees for ud connected contribution, same for Aubin et al. 2022, χQCD 2022

R-ratio result from Colangelo et al. 2022

M. Hoferichter (Institute for Theoretical Physics)

Hadronic contributions to $(g - 2)_{\mu}$

1= nac

- This is a puzzle, we do not know what causes this intermediate-window tension
 → higher significance than global tension with BMWc
- For Run 2+3 result of E989 (spring 2023): lattice vs. e^+e^- will not be resolved
- Aim for WP update: produce a lattice-QCD "method average" in analogy to e^+e^-
 - \hookrightarrow robust quantification of tension in intermediate window
- Next steps:
 - Improved lattice calculations for full HVP, more windows
 - New e^+e^- data, especially for critical 2π channel (CMD3, BESIII, BaBar, Belle II)
 - Further scrutiny of radiative corrections
 - Potentially \(\tau\) data to be resurrected as a viable cross check if progress on isospin breaking allows (lattice QCD, dispersive)
 - Independent HVP determination from MuonE

ELE DOG

What can we conclude about the difference at the moment?

- Difference in full HVP between BMWc and e^+e^- about 14.4(6.8) × 10⁻¹⁰, thereof 7.3(2.0) × 10⁻¹⁰ from intermediate window
- Can one modify the 2π cross section to accommodate change? Colangelo et al. 2022
 - \hookrightarrow yes, but not simultaneously for full HVP and window
- Assuming
 - uniform shifts in low-energy $\pi\pi$ region
 - no significant negative shifts
 - \hookrightarrow at least $\simeq 40\%$ from above 1 GeV
- Changes above \simeq 2 GeV constrained by hadronic running of α BMWc, Mainz

- Muon g 2: where do we stand?
 - E989 to improve experimental result by another factor 3
 - \hookrightarrow Run 6 with μ^+ approved
 - For HLbL agreement between lattice and phenomenology
 - \hookrightarrow another factor 2 looks feasible
 - New e⁺e⁻ data and lattice calculations forthcoming
 - \hookrightarrow window observables for sharper comparisons
 - For prospects see also Snowmass contribution 2203.15810
 - WP update in preparation, aimed for Run 2+3 result

Merging procedure

- How to deal with tensions?
 - \hookrightarrow extensive discussion at TI workshops
- Errors systematics dominated
 - $\hookrightarrow \text{scale factor not adequate/sufficient}$
- There was broad consensus to adopt conservative error estimates

• Merging procedure

- Take average of central values from different analyses channel by channel (including analyticity/unitarity constraints)
- In each channel: take biggest uncertainty from DHMZ/KNT, add half their difference as additional systematic effect
- Exception: in 2π channel this additional systematic uncertainty taken as [fit w/o KLOE fit w/o BaBar]/2
- Take interchannel correlations from DHMZ analysis

\hookrightarrow covers tensions in the data and accounts for different methodologies for

the combination of data sets

三日 のへの

A note on higher-order hadronic effects

- Generic scaling of $\mathcal{O}(\alpha^4)$ effects: $\left(\frac{\alpha}{\pi}\right)^4 \simeq 3 \times 10^{-11}$
- Enhancements (numerical or log $\frac{m_e}{m_u}$) can make such effects relevant Kurz et al. 2014
- NLO HLbL small Colangelo et al. 2014
- Mixed hadronic and leptonic contributions with inner electron potentially dangerous

ightarrow could affect LO HVP via radiation of e^+e^- pairs, but $\lesssim 1 imes 10^{-11}$ MH, Teubner 2022

FAQ 1: do e^+e^- data and lattice really measure the same thing?

- Conventions for bare cross section
 - Includes radiative intermediate states and final-state radiation: $\pi^0\gamma$, $\eta\gamma$, $\pi\pi\gamma$, ...
 - Initial-state radiation and VP subtracted to avoid double counting
- NLO HVP insertions

$$a_{\mu}^{\text{HVP, NLO}} \simeq [\underbrace{-20.7}_{(a)} + \underbrace{10.6}_{(b)} + \underbrace{0.3}_{(c)}] \times 10^{-10} = -9.8 \times 10^{-10}$$

 \hookrightarrow dominant VP effect from leptons, HVP iteration very small

- Important point: no need to specify hadronic resonances
 - \hookrightarrow calculation set up in terms of decay channels

HVP in subtraction determined iteratively (converges with α) and self-consistently

$$lpha(q^2) = rac{lpha(0)}{1 - \Delta lpha_{ ext{lep}}(q^2) - \Delta lpha_{ ext{had}}(q^2)} \qquad \Delta lpha_{ ext{had}}(q^2) = -rac{lpha q^2}{3\pi} P \int\limits_{Shr}^{\infty} ds rac{R_{ ext{had}}(s)}{s(s-q^2)}$$

- Subtlety for very narrow $c\bar{c}$ and $b\bar{b}$ resonances (ω and ϕ perfectly fine)
 - \hookrightarrow Dyson series does not converge Jegerlehner
- Solution: take out resonance that is being corrected in R_{had} in VP undressing
- How to match all of this on the lattice?
- Need to calculate all sorts of isospin-breaking (IB) corrections

 $\hookrightarrow e^2$ (QED) and $\delta = m_u - m_d$ (strong IB) corrections

• Diagram (f) F critical for consistent VP subtraction

 \hookrightarrow same diagram without additional gluons is subtracted RBC/UKQCD 2018

FAQ 1: do e^+e^- data and lattice really measure the same thing?

	SD window		int window		LD window		full HVP	
	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$
$\pi^{0}\gamma$	0.16(0)	-	1.52(2)	-	2.70(4)	-	4.38(6)	-
$\eta\gamma$	0.05(0)	-	0.34(1)	-	0.31(1)	-	0.70(2)	-
$ ho-\omega$ mixing	-	0.05(0)	-	0.83(6)	-	2.79(11)	-	3.68(17)
FSR (2 <i>π</i>)	0.11(0)	-	1.17(1)	-	3.14(3)	-	4.42(4)	-
$M_{\pi 0}$ vs. $M_{\pi \pm}$ (2 π)	0.04(1)	-	-0.09(7)	-	-7.62(14)	-	-7.67(22)	-
FSR (K^+K^-)	0.07(0)	-	0.39(2)	-	0.29(2)	-	0.75(4)	-
kaon mass (K^+K^-)	-0.29(1)	0.44(2)	-1.71(9)	2.63(14)	-1.24(6)	1.91(10)	-3.24(17)	4.98(26)
kaon mass $(\bar{\kappa}^0 \kappa^0)$	0.00(0)	-0.41(2)	-0.01(0)	-2.44(12)	-0.01(0)	-1.78(9)	-0.02(0)	-4.62(23)
total	0.14(1)	0.08(3)	1.61(12)	1.02(20)	-2.44(16)	2.92(17)	-0.68(29)	4.04(39)
BMWc 2020	-	-	-0.09(6)	0.52(4)	-	-	-1.5(6)	1.9(1.2)
RBC/UKQCD 2018	-	-	0.0(2)	0.1(3)	-	-	-1.0(6.6)	10.6(8.0)
JLM 2021	-	-	-	-	-	-	-	3.32(89)

• Note: error estimates only refer to the effects included

 \hookrightarrow additional channels missing (most relevant for SD and int window)

• Reasonable agreement with BMWc 2020, RBC/UKQCD 2018, and James, Lewis, Maltman 2021

 \hookrightarrow if anything, the result would become even larger with pheno estimates

FAQ 2: can we trust radiative corrections/MC generators?

- Typical objection: can we really trust scalar QED in the MC generator?
- Report by Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies
 - ← Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data (0912.0749)
- Never just use scalar QED, include pion form factor wherever possible
- From the point of view of dispersion relations, this captures the leading infrared enhanced effects
- Existing NLO calculations do not point to (significant) center-of-mass-energy dependent effects Campanario et al. 2019
- Could there be subtleties in how the form factor is implemented or from pion rescattering?

ELE SOG

- Test case: forward-backward asymmetry (C-odd)
- Large corrections found in GVMD model Ignatov, Lee 2022
- Can be reproduced using dispersion relations
 - \hookrightarrow effect still comes from infrared enhanced contributions

- Why did people stop using $\tau \rightarrow \pi \pi \nu_{\tau}$ data?
 - Better precision from e⁺e⁻
 - IB corrections not under sufficient control
- If this issue could be solved, would yield very useful cross check
 - \hookrightarrow new data at least on spectrum from Belle II
- New developments from the lattice talk by M. Bruno at Edinburgh
 - \hookrightarrow re-using HLbL lattice data
- Long-distance QED (G_{EM}) still taken from phenomenology for the time being
 - \hookrightarrow dispersive methods?

= nac

talk by M. Bruno at Edinburgh

Window fever - au

my PRELIMINARY analysis of exp. + latt. data only exp. errs, no attempt at estimating sys. errs for [1] and [2] LQCD syst. errs require further investigation/improvements

Isospin-breaking: [1]: w/o $\rho\gamma$ mixing [2]: w/ $\rho\gamma$ mixing

What is $\rho\gamma$? too much to say, too little time to explain everything...

Window quantities: the inverse Laplace problem

Colangelo et al. 2022

 \hookrightarrow localization in energy entails strong cancellation in Euclidean time

11 DQC

Relation to global electroweak fit

Hadronic running of α

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \frac{\alpha M_Z^2}{3\pi} P \int_{s_{\rm thr}}^{\infty} {\rm d}s \frac{R_{\rm had}(s)}{s(M_Z^2 - s)}$$

- $\Delta \alpha_{had}^{(5)}(M_Z^2)$ enters as input in global electroweak fit
 - \hookrightarrow integral weighted more strongly towards high energy Passera, Marciano, Sirlin 2008
- Changes in $R_{had}(s)$ have to occur at low energies, $\lesssim 2 \text{ GeV}$ Crivellin et al. 2020, Keshavarzi et al. 2020, Malaescu et al. 2020
- This seems to happen for BMWc calculation (translated from the space-like), with only moderate increase of tensions in the electroweak fit ($\sim 1.8\sigma \rightarrow 2.4\sigma$)
 - \hookrightarrow need large changes in low-energy cross section
- Similar conclusion from Mainz 2022 calculation of hadronic running

■▶ 三日 のへの

Changing the $\pi\pi$ cross section below 1 GeV

- Changes in 2π cross section **cannot be arbitrary** due to analyticity/unitarity constraints, but increase is actually possible
- Three scenarios:
 - "Low-energy" scenario: $\pi\pi$ phase shifts
 - High-energy scenario: conformal polynomial
 - Combined scenario
 - \hookrightarrow 2. and 3. lead to uniform shift, 1. concentrated in ρ region

Correlations

Correlations with other observables:

- Pion charge radius $\langle r_{\pi}^2 \rangle$
 - \hookrightarrow significant change in scenarios 2. and 3.
 - \hookrightarrow can be tested in lattice QCD
- Hadronic running of α
- Space-like pion form factor

Oct 19, 2022

	e^+e^- KNT, DHMZ	EW fit HEPFit	EW fit GFitter	guess based on BMWc
$\Delta lpha_{ m had}^{(5)}(M_Z^2) imes 10^4$	276.1(1.1)	270.2(3.0)	271.6(3.9)	277.8(1.3)
difference to e^+e^-		-1.8σ	-1.1σ	$+1.0\sigma$

• Time-like formulation:

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \frac{\alpha M_Z^2}{3\pi} P \int_{s_{\rm thr}}^{\infty} {\rm d}s \frac{R_{\rm had}(s)}{s(M_Z^2 - s)}$$

• Space-like formulation:

$$\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) = \frac{\alpha}{\pi} \hat{\Pi}(-M_Z^2) + \frac{\alpha}{\pi} \left(\hat{\Pi}(M_Z^2) - \hat{\Pi}(-M_Z^2) \right)$$

Global EW fit

1

- Difference between HEPFit and GFitter implementation mainly treatment of *M*_W
- Pull goes into opposite direction

Oct 19, 2022