Physics at MESA

Niklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

PSI, October 2022

- The future of electron scattering in Mainz: The MESA accelerator
- Parity violation, the weak mixing angle and more: The P2 Experiment
- Form factors, few-body systems and nuclear astrophysics
 The MAGIX Spectrometer
- Home-made dark matter The DarkMESA beam-dump experiment

The Mainz Energy-Recovery Supercodcuing Accelerator

(MESA)

Niklaus Berger - PSI, October 2022 - Slide 3

Niklaus Berger – PSI, October 2022 – Slide 4

Two superconducting cryomodules Accelerate beam by 25 MeV per pass

in .

南南南南

Re-circulation arcs 155 MeV energy for extracted beam 150 µA of electron beam current

雨雨雨

RAN

朝朝外

Studying parity violation with the P2 experiment

The weak mixing angle $sin^2\theta_w$

 One of the fundamental parameters of the standard model

(the two best measurements disagree, should be resolved)

 Value is a free parameter, scale dependence is predicted by theory with exquisite precision

The weak mixing angle $sin^2\theta_w$

• One of the fundamental parameters of the standard model

(the two best measurements disagree, should be resolved)

- Value is a free parameter, scale dependence is predicted by theory with exquisite precision
- Aim for a low energy measurement with precision comparable to the LEP/SLD Z-pole measurements

Scale dependence (running) of $\sin^2\theta_{W}$

New Physics in the running of $\sin^2\theta_{\rm W}$

Niklaus Berger – PSI, October 2022 – Slide 16

Dark Zs

Niklaus Berger – PSI, October 2022 – Slide 17

Dark Zs

Bhupal Dev, Rodejohann, Xu, Zhang, arXiv:2103.09067

Contact Interactions

Contact interactions up to 49 TeV (comparable to LHC at 300 fb⁻¹)

Niklaus Berger – PSI, October 2022 – Slide 19

How to measure the weak mixing angle?

Niklaus Berger - PSI, October 2022 - Slide 21

Niklaus Berger – PSI, October 2022 – Slide 22

Parity violating electron scattering

Niklaus Berger - PSI, October 2022 - Slide 23

Parity violating electron scattering

Parity violating electron scattering

Niklaus Berger – PSI, October 2022 – Slide 26

Niklaus Berger - PSI, October 2022 - Slide 27

Why is this difficult?

• $sin^2\theta_{W} \approx 0.25$: Weak charge is tiny

$$Q_W = 1 - 4\sin^2\theta_W$$

 At low Q²: Asymmetry is tiny (40 parts per billion): need very large statistics

$$A_{PV} = \frac{N_R - N_L}{N_R + N_L} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

 We are subtracting two huge numbers from each other (Not really - subtract many small numbers pair-wise from each other)

Why is this difficult?

• $sin^2\theta_{W} \approx 0.25$: Weak charge is tiny

$$Q_W = 1 - 4\sin^2\theta_W$$

 At low Q²: Asymmetry is tiny (40 parts per billion): need very large statistics

$$A_{PV} = \frac{N_R - N_L}{N_R + N_L} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

- We are subtracting two huge numbers from each other (Not really - subtract many small numbers pairwise from each other)
- Want to measure $sin^2\theta_{_{\rm W}}$ to 0.13% Need $Q_{_{\rm W}}$ at 1.5%
- N a few 10¹⁸ Measure 11'000 hours with close to 10^{11} electrons/s 100 GHz

Can we get that rate?

• 150 μ A of electron beam current

- Luminosity 2.4 10³⁹ s⁻¹cm⁻²
- Integrate 8.6 ab⁻¹

Electron beam

Proton Target

How to detect 100 GHz of (the right) electrons...

Niklaus Berger – PSI, October 2022 – Slide 31

Solenoid spectrometer

Integrating detectors

Tracking detector (measuring Q^2)

 Low momentum electrons, very high rates: Thin, fast, granular detectors High-Voltage Monolithic Active Pixel Sensors (see Mu3e)

Can we do more?

Carbon - Complementary New Physics Search

- Same with a $^{\rm 12}{\rm C}$ target
- Much larger asymmetry
- No 1 4 sin²θ_w bonus not competitive for sin²θ_w (potentially 2nd best measurement on a nucleus)
- But: New direction in isospin space
- Experimentally: Limited by polarimetry, hope to ultimately reach 0.3%
- Best measurement to date: MIT-Bates, ~25%

Lead (²⁰⁸Pb) - Neutron Skin

Where are the neutrons in the nucleus?

- Parity violating electron scattering gives access to the neutron distribution
- Neutron skin related to the symmetry energy - nuclear Equation of State
- Size of neutron stars

Niklaus Berger – PSI, October 2022 – Slide 38

The MAGIX Spectrometers

Niklaus Berger – PSI, October 2022 – Slide 39

ERL mode: 30-105 MeV, >1000 $\mu A,$ energy recovered in cavities MX-EB mode: 20-105 MeV, $~~10~\mu A,$ small beam dump \rightarrow solid state targets

Gas Jet Target

- High resolution of spectrometers easily spoiled by scattering in the target chamber
- Get rid of the target chamber
- Supersonic gas stream shooting into the beam
- Catch most gas below, add differential pumping

- Group of A. Khoukaz, Uni Münster
- Tested in the A1 setup at MAMI

Physics at MAGIX

Hadron Structure

Topic	Reaction	Jet
p Formfactor	H(e,e')p	н
d Formfactor	D(e,e')d	D
³ He Formfactor	$^{3}\text{He}(e,e')^{3}\text{He}$	³ He
⁴ He Formfactor	$^{4}\text{He}(e,e')^{4}\text{He}$	⁴ He

Few-Body Systems

d Breakup	D(e, e'p)	D
³ He inclusive	3 He (e,e')	³ He
⁴ He inclusive	$^{4}\mathrm{He}(e,e')$	⁴ He
⁴ He monopole	$^{4}\mathrm{He}(e,e')^{4}\mathrm{He}^{*}$	⁴ He
¹⁶ O inclusive	$^{16}\mathrm{O}(e,e')$	^{16}O
⁴⁰ Ar inclusive	$^{40}\operatorname{Ar}(e,e')$	⁴⁰ Ar
³ He exclusive	3 He $(e, e'p/d)d/p$	³ He
⁴ He exclusive	$^{4}\text{He}(e,e'p/d)$	⁴ He

Dark Sector

Leptonic Decay Invisible Decay Observables $G_E(Q^2), G_M(Q^2), r_E, r_M$ $A(Q^2), B(Q^2), r_d$ r_E r_E

 $d\sigma/d\Omega$, polarizabilities Structure functions, R_L Structure functions, R_L Transition Formfactors $E(^4\text{He}^*)$, $\Gamma(^4\text{He}^*)$ Structure functions, R_L Structure functions, R_L $d\sigma/d\Omega$ $d\sigma/d\Omega$

 ^{16}O

 ^{16}O

Astrophysical Reactions

S-Factor Phase 1 ${}^{16}O(e, e'\alpha){}^{12}C$ S-Factor Phase 2 ${}^{16}O(e, e'\alpha){}^{12}C$ $S_{E1}(E), S_{E2}(E)$ $S_{E1}(E), S_{E2}(E)$

Niklaus Berger - PSI, October 2022 - Slide 43

Example: Form factors of the proton

elastic e-p cross section (Rosenbluth formula)

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e}\right) = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_e}\right)_{\mathrm{Mott}^*} \cdot \frac{1}{(1+\tau)} \left[G_{\mathrm{E}}^2(Q^2) + \frac{\tau}{\epsilon}G_{\mathrm{M}}^2(Q^2)\right]$$

 $G_{\rm E}^2(Q^2) \leftrightarrow$ charge distribution $G_{\rm M}^2(Q^2) \leftrightarrow$ magnetization distribution

- Elastic e-p scattering gives access to proton form factors
- Starting 2010: Proton radius puzzle e-p scattering and muonic hydrogen give different results
- Now mostly resolved (the proton is small)
- But...

Niklaus Berger – PSI, October 2022 – Slide 44

Example: Form factors of the proton

- Mainz A1 and JLab PRAD data are still not consistent
- Form factor puzzle?
- MAGIX: Q^2 coverage from 10⁻⁵ to 0.03 GeV²

Example: Dark Photons

Example: Nuclear astrophysics

very relevant for stellar burning, oxygen abundance and synthesis of heavy

elements

C.S. as function of $E_{c.m.}$ $\sigma(E) = \frac{1}{E} e^{-\frac{2\pi Z_1 Z_2 \alpha c}{v}} \cdot S(E)$ "S-factor" unknown nuclear physics Compton wave length in fusion process

Example: Nuclear astrophysics

Niklaus Berger – PSI, October 2022 – Slide 48

Example: Nuclear astrophysics

- Phase I: Spectrometers plus recoil detector
- Phase II: Zero-degree detector plus
 multiple recoil detectors

Niklaus Berger – PSI, October 2022 – Slide 49

Dark matter in the beam dump

DarkMESA

Niklaus Berger – PSI, October 2022 – Slide 50

DarkMESA

- P2: Several 10²² electrons on target
- Dark matter $\chi,$ mediator γ'

$$Y_{Prod} \sim \epsilon^2 / m_A^2$$

 $Y_{Det} \sim \epsilon^2 \alpha_D / m_A^2$

 $Y_{TOT} \sim \epsilon^4 \alpha_D/m_A^4$ -- PSI, October 2022 - Slide 51

DarkMESA

- Detection DM particles
 - enough recoil energy / another $DM \leftrightarrow SM$ interaction
- Background
 - Detector well shielded from SM
 - Below π -production threshold \rightarrow no μ , ν produced
 - Cosmogenic background
 - Beam directionality, RF coincidence, beam on / off
 - low neutron sensitivity of detector, active veto detector shield

DarkMESA

Niklaus Berger – PSI, October 2022 – Slide 53

Sensitivity

Outlook

- Civil construction finally coming to a close
- 2023: Setting up the accelerator and experiments (components mostly ready and tested in existing buildings)
- 2024: Accelerator and experiment commissioning, extracted beam, starting at 55 MeV
- 2025++: Full energy, extracted beam data taking, commissioning of energy recovery mode

Niklaus Berger – PSI, October 2022 – Slide 56

P2 Error budget

$E_{\mathbf{beam}}$	$155{ m MeV}$	$\langle s_{\rm W}^2 \rangle$	0.23116
$ar{ heta}_{\mathbf{f}}$	35°	$(\Delta s_{\rm W}^2)_{\rm Total}$	$3.3 \times 10^{-4} \ (0.14 \%)$
$\delta heta_{ m f}$	20°	$(\Delta s_{\mathrm{W}}^2)_{\mathrm{Statistics}}$	$2.7 \times 10^{-4} \ (0.12 \%)$
$\langle Q^2 \rangle_{L=600\mathrm{mm},\ \delta\theta_{\mathrm{f}}=20^\circ}$	$6 \times 10^{-3} (\mathrm{GeV/c})^2$	$(\Delta s_{\rm W}^2)_{\rm Polarization}$	$1.0 \times 10^{-4} \ (0.04 \%)$
$\langle A^{\exp} \rangle$	$-39.94\mathrm{ppb}$	$(\Delta s_{ m W}^2)_{ m Apparative}$	$0.5 \times 10^{-4} \ (0.02 \ \%)$
$(\Delta A^{\exp})_{\mathrm{Total}}$	$0.56 \mathrm{ppb}~(1.40\%)$	$(\Delta s_{\mathrm{W}}^2)_{\Box_{\gamma Z}}$	$0.4 \times 10^{-4} \ (0.02 \%)$
$(\Delta A^{\exp})_{\text{Statistics}}$	0.51 ppb (1.28 %)	$(\Delta s_{\rm W}^2)_{\rm nucl. FF}$	$1.2 \times 10^{-4} \ (0.05 \ \%)$
$(\Delta A^{\exp})_{ m Polarization}$	$0.21{\rm ppb}~(0.53\%)$	$\langle Q^2 \rangle_{\rm Cherenkov}$	$4.57 \times 10^{-3} ({\rm GeV/c})^2$
$(\Delta A^{\exp})_{\text{Apparative}}$	$0.10\mathrm{ppb}~(0.25\%)$	$\langle A^{\exp} \rangle_{\rm Cherenkov}$	-28.77 ppb

More to come...

- Atomic parity violation in a single radium ion (Groningen)
- Moller at JLAB e⁻e⁻ scattering
- SoLID: Deep inelastic e-p scattering at JLab
- Much improved LHC measurements at the Z-pole

Superconducting Cryomodules

Teichert et al. NIM A 557 (2006) 239

Niklaus Berger – PSI, October 2022 – Slide 60

Choice of scattering angle

Niklaus Berger - PSI, October 2022 - Slide 61

Choice of scattering angle

Target

- 60 cm of liquid hydrogen
- 3.1 KW beam power deposited
- Should not boil...
- Challenging design using CFD tools (Silviu Covrig, JLab)

Niklaus Berger - PSI, October 2022 - Slide 63

PVeS Experiment Summary

Niklaus Berger – PSI, October 2022 – Slide 64

Polarized Source and Helicity Flips

Stability Requirements

The main worry are beam fluctuations correlated with the helicity:

	Achieved at MAMI	$sin^2 \theta_W^{}$ uncertainty	requirement
 Energy fluctuations: 	0.04 eV	< 0.1 ppb	ok!
 Position fluctuations 	3 nm	5 ppb	0.13 nm
 Angle fluctuations 	0.5 nrad	3 ppb	0.06 nrad
 Intensity fluctuations 	14 ppb	4 ppb	0.36 ppb

Polarimetry at MESA

Polarimetry: Double Mott Polarimeter

[Gellrich and Kessler, Phys.Rev.A. 43, 204 (1991)]

Mott Polarimertry:

- Measure left/right asymmetry to obtain spin polarisation
- Analysing power of foils needs to be extrapolated

Double Mott Polarimeter:

- Obtain analysing power from measurement
- Precise measurement of spin polarisation
- Invasive measurement at source

Polarimetry: Hydro-Møller Polarimeter

Møller scattering from polarized (8 T field) atomic hydrogen in a trap

- Online capability
- High accuracy (< 0.5%)
- About 2 h to reach 0.5% statistical accuracy

