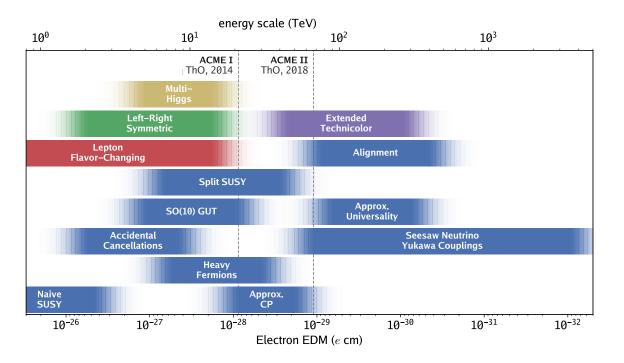
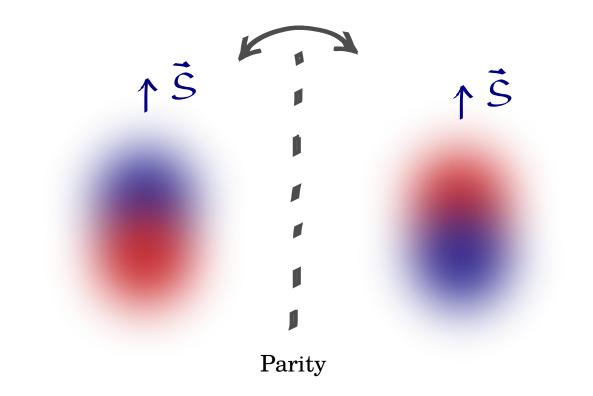
Electric dipole moment searches in atoms & molecules

Amar Vutha

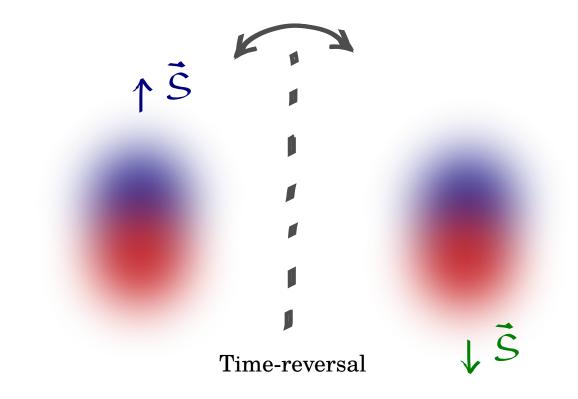
PSI 2022


Permanent electric dipole moment of a particle

Asymmetry of charge distribution

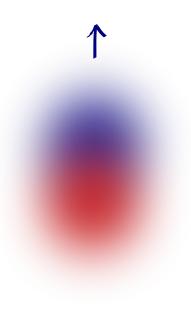

Has to be oriented along spin vector Wigner-Eckart theorem

Low-energy observable which probes extremely high-energy physics

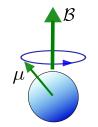

High energy reach

EDMs violate parity symmetry

EDMs violate time-reversal symmetry

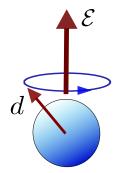

Permanent electric dipole moment of a particle

Asymmetry of charge distribution


Has to be oriented along spin vector Wigner-Eckart theorem

Low-energy observable which probes extremely high-energy physics

model-independent signature of some new P,T-violation


Measuring an electric dipole moment

[] B-field exerts torque on magnetic moment

[] Spin precession angle per unit time is proportional to the magnetic moment

Similarly

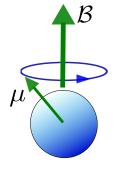
[] E-field exerts torque on electric dipole moment

[] Spin precession angle per unit time is proportional to the EDM

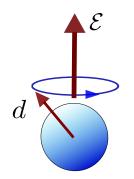
Quantum mechanical version

Zero magnetic field:

(4)


Non-zero magnetic field:

1+>


This energy difference gives the magnetic moment

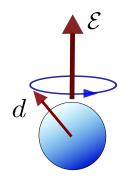
μB

Quantum mechanical version

Zero electric field:

1+>

Non-zero electric field:


1+>

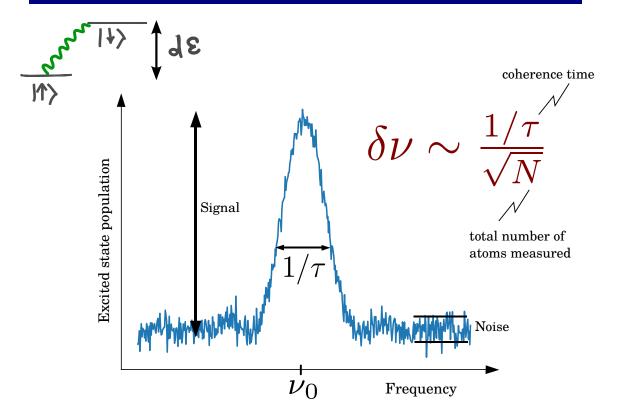
36

/1/

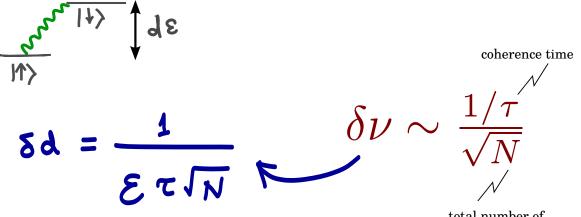
This energy difference gives the EDM

Quantum mechanical version

Zero electric field:


I+>

Non-zero electric field:



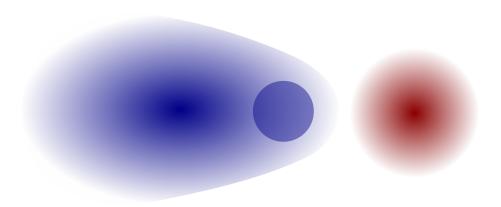
This resonance frequency gives the EDM

Electron spin resonance

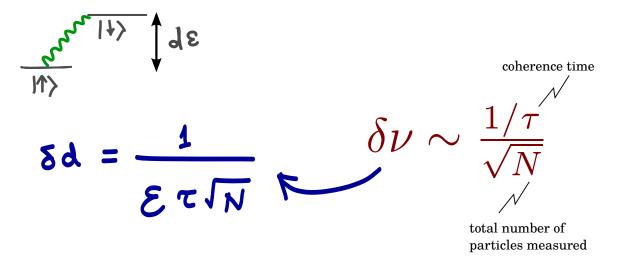
Precision of EDM experiments

total number of particles measured

So we always want:

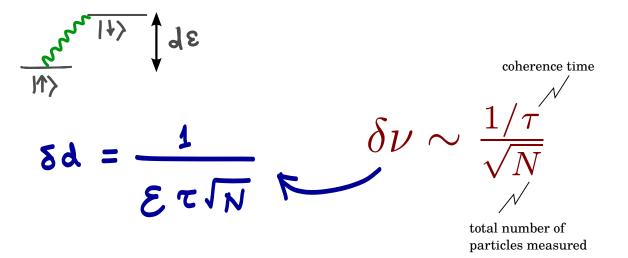

- ... the largest electric field
- ... the longest coherence time
- ... lots and lots of particles

Ongoing EDM searches with atoms & molecules


ThO	electron	(ACME) Chicago + Harvard + Northwestern)
HfF+, ThF+	electron	JILA
YbF	electron	Imperial College
YbOH	electron	(PolyEDM) CalTech + Harvard
BaF	electron	multiple groups
Hg	nuclear	Washington
Ra	nuclear	Argonne
Xe	nuclear	multiple groups
TlF	nuclear	(CENTREX) Chicago + Columbia + Yale

+ more brewing

A molecule is complicated

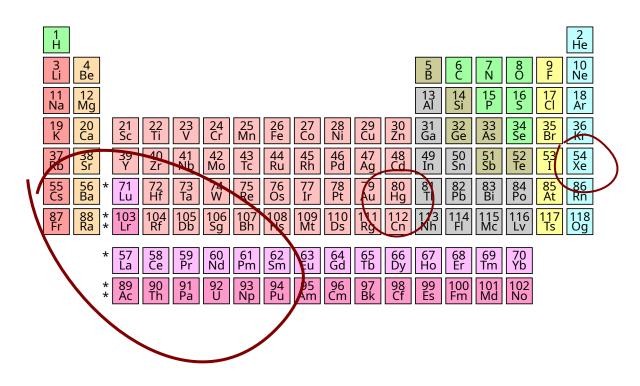

Precision of EDM experiments

So we always want:

- ... the largest electric field \longrightarrow this is why we use atoms & molecules
- ... the longest coherence time
- ... lots and lots of particles

Precision of EDM experiments

So we always want:


 $\begin{array}{c} \dots \text{ the largest electric field } \longrightarrow \text{ this is why we use atoms \& molecules} \\ \dots \text{ the longest coherence time} \\ \longrightarrow \text{ could also be improved using AMO} \\ \dots \text{ lots and lots of particles} \end{array} \begin{array}{c} \longrightarrow \text{ this is why we use atoms \& molecules} \\ \longrightarrow \text{ could also be improved using AMO} \\ \text{ techniques (cooling \& trapping)} \end{array}$

Ongoing EDM searches with atoms & molecules

ThO	electron	(ACME) Chicago + Harvard + Northwestern)
HfF+, ThF+	electron	JILA
YbF	electron	Imperial College
YbOH	electron	(PolyEDM) CalTech + Harvard
BaF	electron	multiple groups
Hg	nuclear	Washington
Ra	nuclear	Argonne
Xe	nuclear	multiple groups
TlF	nuclear	(CENTREX) Chicago + Columbia + Yale

+ more brewing

Ongoing EDM searches with atoms & molecules

Why is the E-field so large in atoms & molecules ?

In fact, the field experienced by the EDMs of electrons or nuclei inside atoms & molecules is ZERO !

(non-relativistic point particles: Schiff's theorem)

Why is the E-field so large in atoms & molecules ?

In fact, the field experienced by the EDMs of electrons or nuclei inside atoms & molecules is ZERO !

(non-relativistic point particles: Schiff's theorem)

Electrons move ~relativistically inside heavy atoms (Salpeter, Sandars)

 \Rightarrow electron EDM leads to P,T-violating energy shifts in atoms/molecules

Why is the E-field so large in atoms & molecules ?

In fact, the field experienced by the EDMs of electrons or nuclei inside atoms & molecules is ZERO !

(non-relativistic point particles: Schiff's theorem)

Electrons move ~relativistically inside heavy atoms (Salpeter, Sandars)

 \Rightarrow electron EDM leads to P,T-violating energy shifts in atoms/molecules

Nuclei are extended objects (Schiff)

 \Rightarrow nuclear EDM leads to P,T-violating energy shifts in atoms/molecules

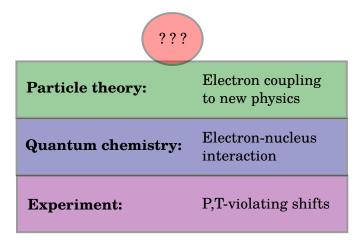
P,T-violating energy shifts

So we never directly measure particle EDMs in atoms & molecules

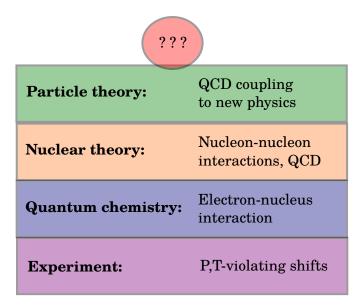
What we measure are **P,T-violating energy level shifts** that depend on the *spin orientation* relative to *electrical polarization*

$$\Delta \nu = \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}}$$

Electrons:


$$\Delta \nu = \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow \vec{d}_{\rm atom} \cdot \vec{\mathcal{E}}_{\rm lab} \qquad (\text{atoms})$$

$$\Delta \nu = \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow d_e \vec{\mathcal{E}}_{\rm eff} \, \vec{S} \cdot \hat{n} \qquad (\text{molecules})$$


Nuclei:

$$\begin{split} \Delta \nu &= \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow \vec{d}_{\rm atom} \cdot \vec{\mathcal{E}}_{\rm lab} & \text{(atoms)} \\ \Delta \nu &= \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow (d_n R + 6\mathfrak{S}) \mathbf{X} \, \vec{I} \cdot \hat{n} & \text{(molecules)} \end{split}$$

Electron "EDM" experiments

Nuclear "EDM" experiments

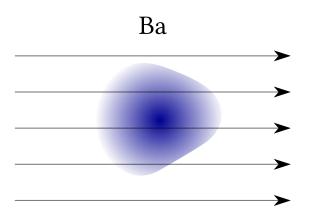
P,T-violating energy shifts

So we never directly measure particle EDMs in atoms & molecules

What we measure are **P,T-violating energy level shifts** that depend on the *spin orientation* relative to *electrical polarization*

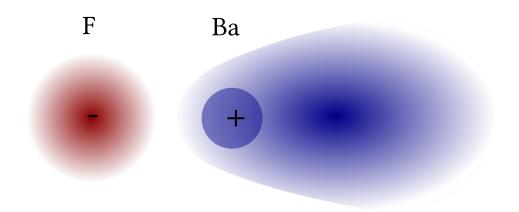
$$\Delta \nu = \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}}$$

Electrons:


$$\Delta \nu = \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow \vec{d}_{\rm atom} \cdot \vec{\mathcal{E}}_{\rm lab} \qquad (\text{atoms})$$

$$\Delta \nu = \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow d_e \vec{\mathcal{E}}_{\rm eff} \, \vec{S} \cdot \hat{n} \qquad (\text{molecules})$$

Nuclei:


$$\begin{split} \Delta \nu &= \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow \vec{d}_{\rm atom} \cdot \vec{\mathcal{E}}_{\rm lab} & \text{(atoms)} \\ \Delta \nu &= \Upsilon_{\rm PT} \, \vec{J} \cdot \hat{\mathcal{D}} \longrightarrow (d_n R + 6\mathfrak{S}) \mathbf{X} \, \vec{I} \cdot \hat{n} & \text{(molecules)} \end{split}$$

Why polar molecules?

Neutral atom in lab E-field

Why polar molecules?

Polar molecule = +ion subjected to large electric field from the -ion

Ongoing EDM searches with atoms & molecules

ThO	electron	molecular beam, laser spectroscopy
HfF+, ThF+	electron	ion trap, laser spectroscopy
YbF	electron	molecular beam, rf+laser spectroscopy
YbOH	electron	laser-cooled molecules
BaF	electron	molecular beam; matrix isolation
Hg	nuclear	vapour cell, rf spectroscopy
Ra	nuclear	optical trap
Xe	nuclear	cells, rf spectroscopy
TlF	nuclear	molecular beam, rf+laser spectroscopy

Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions

William B. Cairncross, Daniel N. Gresh, Matt Grau, Kevin C. Cossel, Tanya S. Roussy, Yiqi Ni, Yan Zhou, Jun Ye, and Eric A. Cornell
Phys. Rev. Lett. **119**, 153001 – Published 9 October 2017

Improved limit on the electric dipole moment of the electron

ACME Collaboration

Nature 562, 355-360 (2018) Cite this article

 $|d_e| \lesssim 10^{-29} \ e \ {\rm cm}$

Reduced Limit on the Permanent Electric Dipole Moment of $^{199}\mathrm{Hg}$

B. Graner, Y. Chen ((陳宜)), E. G. Lindahl, and B. R. Heckel Phys. Rev. Lett. **116**, 161601 – Published 18 April 2016; Erratum Phys. Rev. Lett. **119**, 119901 (2017)

New Limit on the Permanent Electric Dipole Moment of $^{129}\mathrm{Xe}$ Using $^{3}\mathrm{He}$ Comagnetometry and SQUID Detection

N. Sachdeva, I. Fan, E. Babcock, M. Burghoff, T. E. Chupp, S. Degenkolb, P. Fierlinger, S. Haude, E. Kraegeloh, W. Kilian, S. Knappe-Grüneberg, F. Kuchler, T. Liu, M. Marino, J. Meinel, K. Rolfs, Z. Salhi, A. Schnabel, J. T. Singh, S. Stuiber, W. A. Terrano, L. Trahms, and J. Voigt Phys. Rev. Lett. **123**, 143003 – Published 4 October 2019

Measurement of the permanent electric dipole moment of the $^{129}\mathrm{Xe}$ atom

F. Allmendinger, I. Engin, W. Heil, S. Karpuk, H.-J. Krause, B. Niederländer, A. Offenhäusser, M. Repetto, U. Schmidt, and S. Zimmer Phys. Rev. A **100**, 022505 – Published 7 August 2019

Improved limit on the 225 Ra electric dipole moment

Michael Bishof, Richard H. Parker, Kevin G. Bailey, John P. Greene, Roy J. Holt, Mukut R. Kalita, Wolfgang Korsch, Nathan D. Lemke, Zheng-Tian Lu, Peter Mueller, Thomas P. O'Connor, Jaideep T. Singh, and Matthew R. Dietrich Phys. Rev. C **94**, 025501 – Published 3 August 2016

Techniques will continue to improve (larger coherence times, more atoms)

Creative choices of experimental systems to maximize amplification of P,T-violation (e.g., radioactive molecules @ TRIUMF, FrAg @ Chicago)

Nuclear theory improvements to better connect experimental measurements with new physics parameters

Developing new techniques for electron EDM measurements

... trapping large quantities of molecules in neon ice crystals eg, arXiv: 2207.07279

Exploring new experimental systems

... octupole-deformed nuclei doped in non-centrosymmetric crystals

Please talk to me if you are interested.

We have openings for students & postdocs!

Techniques will continue to improve (larger coherence times, more atoms)

Creative choices of experimental systems to maximize amplification of P,T-violation (e.g., radioactive molecules @ TRIUMF, FrAg @ Chicago)

Nuclear theory improvements to better connect experimental measurements with new physics parameters