

Andreas Crivellin on behalf of the Muon EDM collaboration PSI & UZH Why do we need a dedicated Muon EDM experiment?

PSI conference, PSI, 20.10.2022

Because no other experiment can cover the intersting region in parameter space!

The PSI Muon EDM Collaboration

A. Adelmann,^{1,2} C. Chavez Barajas,³ D. Chouhan,⁴ N. Berger,⁴ T. Bowcock,³ A. Bravar,⁵ C. Calzolaio,² L. Caminada,^{2,6} G. Cavoto,⁷ C. Chen, R. Chislett,⁹ A. Crivellin,^{2,6,10} M. Daum,² C. Dutsov,² A. Doinaki,² F. Fallavollita,⁴ M. Giovannozzi,¹⁰ G. Hiller,¹³ G. Hesketh,⁹ M. Hildebrandt,² M. Hoferichter,¹³ T. Hume,² T. Hu,¹⁶ A. Keshavarzi,¹⁴ K.S. Khaw,^{16,17} K. Kirch,^{1,2} A. Kozlinsky,⁴ A. Knecht,² M. Lancaster,¹⁵ B. Märkisch,¹⁸ F. Méot,¹⁹ J.K. Ng,¹⁶ A. Papa,^{2,20} P. Pestlin,² J. Price,³ F. Renga,^{7.8} M. Sakurai,¹ P. Schmidt-Wellenburg,² M. Schott,^{4,11} T. Teubner,³ B. Vitali,^{2,20} C. Voena,^{7,8} J. Vossebeld,³ F. Wauters⁴, Y.

Zen

Demonstration of frozen spin technique high voltage-- field coil Phase I Suppor $\sigma(d_{\mu})_{\rm I} = 3 \times 10^{-21}$ sciuhillator ground electrode Phase II HV-electrode pire(detector $\sigma(d_{\mu})_{\rm II} = 6 \times 10^{-23}$ Phase I (2022-2027) Vacuum pulse coil SChaquette UNIVERSITÉ DE GENÈVE UNIVERSITY OF LIVERPOOL ETH Cluster of Excellence US INFN R cryostat allimetor ● 上海交通大学 于改通研究听 BROOKHAVEN MANCHESTER Channel

SAPIENZA

Page 3

technische universität

Università di Pisa

University of 🛛 🕵

Zurich

Physics Beyond the Standard Model

Finding New Physics with Flavour

 At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavours

Flavour observables are sensitive to higher energy scales than collider searches

Andreas Crivellin

Hints for New Physics

Explanations

Muon Anomalous Magnetic Moment

Precision test of the SM See ta

See talk of Martin Hoferichter

- Sensitive to chirality violation
- Theory prediction challenging (hadronic effects) $\Delta a_{\mu} = (279 \pm 76) \times 10^{-11}$ T. Aoyama et al., arXiv:2006.04822
- New experimental results from Fermilab (today!)
- Vanishes for $m_{\mu} \rightarrow 0 \implies measure of LFUV$

4.2σ deviation from the SM prediction?

Dipoles in the EFT

- Effective Hamiltonian $\mathcal{H}_{\text{eff}} = c_R^{\ell_f \ell_i} \, \bar{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu} + \text{h.c.}$
- Anomalous magnetic moment

$$a_{\ell_i} = -\frac{4m_{\ell_i}}{e} \operatorname{Re} c_R^{\ell_i \ell_i}$$

• Electric Dipole moment

$$d_{\ell_i} = -2 \operatorname{Im} c_R^{\ell_i \ell_i}$$

Radiative Lepton decays

$$Br[\mu \to e\gamma] = \frac{m_{\mu}^{3}}{4\pi \Gamma_{\mu}} \left(|c_{R}^{e\mu}|^{2} + |c_{R}^{\mu e}|^{2} \right)$$

Processes intrinsically connected

Explaining the Muon AMM

- PAUL SCHERRER INSTITUT
- Effect of the order of the EW-SM contribution needed

enhancement necessary

- Light particles
 - Neutral scalars
 - Neutral vector (Z' Dark Photon)
 - ALP (axion like particle)
- Chiral enhancement: Chirality flip does not come from the muon mass but rather from a NP mass inside the loop

Light particles or/and chiral enhancement

Chiral Enhancement

- PAUL SCHERRER INSTITUT
- Enhancement by the mass of the fermion in the loop

$$c_R^{fi} = \frac{e}{16\pi^2} \Gamma_{\Psi}^{\mu L^*} \Gamma_{\Psi}^{\mu R} M_{\Psi} \frac{f\left(\frac{M_{\Psi}^2}{M^2}\right) + Qg\left(\frac{M_{\Psi}^2}{M^2}\right)}{M^2}$$

 Q, M_{Ψ} A charge, mass of the fermion f, g A loop functions

- MSSM: (tan(ß))
- 2HDM: m_r/m_u poster of George Hou
- Leptoquarks: m_t/m_µ
- Model with vector like fermions: m_{ψ}/m_{μ}

A priori arbitrary phase

muon EDM

Limits on the Muon EDM

- MFV: $|d_{\mu}^{\rm MFV}| < 2.3 \times 10^{-27} e \, {\rm cm}$ 90% C.L.
- Contribution only starts at the 3-loop level

$$|d_{\mu}| \leq \left[\left(\frac{15}{4} \zeta(3) - \frac{31}{12} \right) \frac{m_e}{m_{\mu}} \left(\frac{\alpha}{\pi} \right)^3 \right]^{-1} |d_e| |d_{\mu}| \leq 0.9 \times 10^{-19} e \,\mathrm{cm} \qquad 90\% \,\mathrm{C.L.}$$

- arXiv:2108.05398 $d_{\mu}(^{199}\text{Hg}) < 6 \times 10^{-20}e\text{cm}$ $d_{\mu}(\text{ThO}) < 2 \times 10^{-20}e\text{cm}$
- Direct limit

$$|d_{\mu}| < 1.5 \times 10^{-19} e \,\mathrm{cm}$$

Improvement of direct limit important

Leptoquarks in a₁₁

Chirally enhanced effects via top-loops

Correlations with $h \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$

$a_{\mu} vs h \rightarrow \mu \mu$

- Chirally enhanced effects via top-loops
- Same coupling structure \rightarrow direct correlation

A.C., D. Mueller, F. Saturnino, PRL 2021

 $h \rightarrow \mu \mu$ at future colliders

 $a_{\mu} vs Z \rightarrow \mu \mu$

Chirally enhanced effects via top-loops

$Z \rightarrow \mu \mu$ at future colliders

0.0

 $\lambda_{32}^{2 LR}$

0.5

1.0

Fine-Tuning?

No signifcant tuning necessary

Future experimental sensitivity

Dedicated experiment needed!

Implications of the Muon EDM

Implications and future directions

PAUL SCHERRER INSTITUT

Andreas Crivellin

Conclusions

- Many intriguing anomalies emerged in the last years:
 The muon EDM
 - LFUV
 - EW observables
 - Direct LHC searches

The muon EDM experiment can play an decisive role proving BSM physics

Backup

Model with new vector-like leptons

Works for a_e but tension with a_{μ}

Future experimental sensitivity

Dedicated experiment needed?

Univers

Models for a common explanation

- MSSM
 - Constrained MFV does not work
 - With generic A-terms has problem with vacuum stability
 - With large tan(ß) and flavour violation
- 2HDMs & LQs: Problems with $\mu \rightarrow e\gamma$
- Extra dimensions
 - Can only explain the muon or the electron AMM because of $\mu{\rightarrow}e\gamma$

Most popular models do not work

2HDM via Barr-Zee

Explanation difficult but possible

- Add neutral scalar
 - Effect in a_{μ} possible without affecting $h \rightarrow \mu \mu$
- Impose abelian flavour symmetry (e.g. L_{μ} - L_{τ}) in order to avoid $\mu \rightarrow e\gamma$
- More minimal model with one generation of vector-like fermions possible if a_e is explained by the SM Higgs and a_μ via a new scalar
- New scalar could be L_{μ} - L_{τ} flavon

Many realizations possible

Model with new vector-like leptons

$$\mathcal{L}_{M} = -M_{L}\bar{L}_{L}L_{R} - M_{E}\bar{E}_{L}E_{R} + \text{h.c.},$$
$$\mathcal{L}_{H} = -\kappa_{L}\bar{L}_{L}HE_{R} - \kappa_{E}\bar{L}_{R}HE_{L}$$
$$-\lambda_{L}\bar{L}_{L}\ell_{R}H - \lambda_{E}\bar{E}_{R}\tilde{H}\ell_{L} + \text{h.c.}$$

Chirally enhanced by $v\kappa_{L,R}/m_{\mu}$

Chiral enhancement

PAUL	SCHERRER		INSTITUT	
	-	—	Г	
	٦		L	

Enhancement by the mass of the fermion in the loop

$$c_R^{fi} = \frac{e}{16\pi^2} \Gamma_{\Psi}^{\mu L^*} \Gamma_{\Psi}^{\mu R} M_{\Psi} \frac{f\left(\frac{M_{\Psi}^2}{M^2}\right) + Qg\left(\frac{M_{\Psi}^2}{M^2}\right)}{M^2}$$

 $Q, M_{\Psi} =$ charge, mass of the fermion f, g = loop functions

- MSSM: (tan(ß))
- Leptoquarks: m_t/m_µ
- Model with vector like fermions: m_{ψ}/m_{μ}

Enhancement from new sources of EW breaking

2HDMs

Unavoidable constraints from $h \rightarrow \tau \mu$