Activities of the Nuclear and Particle Physics Group of the ILL

Michael Jentschel

Outline

Neutrino activities

- STEREO (short base line neutrino oscillation experiment)
- RICOCHET (Experiment on coherent neutrino nucleus scattering)

UCN activities

- PF2 (Mirror neutron, qbounce, D2 cross section, VCN optics)
- Status of SuperSun and PanEDM

Cold Neutron activities

• PF1B (BRAND, PERKEOIII, Beam EDM, diffraction enhancement, new polarizer, optimizing VCN production/transport)

Thermal neutron activities

• S18 (which way experiments, split crystal interferometer)

Outline

Neutrino activities

- STEREO (short base line neutrino oscillation experiment)
- RICOCHET (Experiment on coherent neutrino nucleus scattering)

UCN activities

- PF2 (Mirror neutron, qbounce, D2 cross section, VCN optics)
- Status of SuperSun and PanEDM

Cold Neutron activities

• PF1B (BRAND, PERKEOIII, Beam EDM, diffraction enhancement, new polarizer, optimizing VCN production/transport)

Thermal neutron activities

• S18 (which way experiments, split crystal interferometer)

Neutrino activities at ILL

Absolute measurement of the beta spectrum from ²³⁵U fission as a basis for reactor antineutrino experiments

K. Schreckenbach ^a, H.R. Faust ^a, F. von Feilitzsch ^c, A.A. Hahn ^b, K. Hawerkamp ^a, J.L. Vuilleumier ^b

Sterile neutrino constraints from

Reactor antineutrino anomaly (2011): ~6% Sterile neutrino: $\sin^2(2\theta_{ee}) \sim 0.17$, $\Delta m_{41}^2 \sim 2.3 \ eV^2$

Daya Bay, RENO, Double Chooz (2014): Excess - "5 MeV bump"

<u>Phase II+III:</u>

~350 reactor days ~700 off days

Exclude most RAA allowed parameter space at 95% CL for $\Delta m_{41}^2 < 4 \ eV^2$:

- No oscillation not excluded (p = 0.54)
- RAA best fit excluded at $\geq 4\sigma$
- Neutrino-4 excluded at $3.1~\sigma$
- Neos-RENO best fit excluded at 2.8 σ

Antineutrino yield and spectrum of ²³⁵U(n,f) from

PHYSICAL REVIEW LETTERS 125, 201801 (2020)

Accurate Measurement of the Electron Antineutrino Yield of ²³⁵U Fissions from the STEREO Experiment with 119 Days of Reactor-On Data

H. Almazán⁰,^{1,*} L. Bernard⁰,^{2,†} A. Blanchet⁰,^{3,‡} A. Bonhomme⁰,^{1,3} C. Buck,¹ P. del Amo Sanchez⁰,⁴ I. El Atmani⁰,^{3,§} J. Haser,¹ L. Labit¹,⁴ J. Lamblin¹,² A. Letourneau,^{3,||} D. Lhuillier¹,³ M. Licciardi¹,² M. Lindner¹,¹ T. Materna,³ A. Minotti,^{3,¶} A. Onillon,³ H. Pessard⁰,⁴ J.-S. Réal⁰,² C. Roca,¹ R. Rogly,³ T. Salagnac,^{2,**} V. Savu,³ S. Schoppmann⁰,^{1,†} V. Sergeyeva,^{4,22} T. Soldner⁰,⁵ A. Stutz⁰,² and M. Vialat⁰

1.1

1.2

1.3

1.4

Joint phase II + III unfolding $(E_{rec} \rightarrow E_{\nu})$

- Bump observed (4.6 σ) at ~5.5 MeV
- Reference measurement of ν -spectrum from ²³⁵U
 - From antineutrino problem -> nuclear data problem •
 - A. Letourneau et al. (arXiv:2205.14594, sub. to PRL) •

Since this publication further evaluation of data:

0.9

0.8

0.6

Nucifer

ILL 8.76 m

SRP-I

SRP-II

0.6

Hidden neutron limit from

PHYSICAL REVIEW LETTERS 128, 061801 (2022)

Searching for Hidden Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO Experiment

H. Almazán,^{1,*} L. Bernard,^{2,†} A. Blanchet,^{3,‡} A. Bonhomme,¹ C. Buck[®],¹ P. del Amo Sanchez[®],⁴ I. El Atmani[®],^{3,§} L. Labit[®],⁴ J. Lamblin[©],^{2,||} A. Letourneau[®],³ D. Lhuillier[®],³ M. Licciardi[®],² M. Lindner,¹ T. Materna[®],³ O. Méplan,² H. Pessard[®],⁴ G. Pignol,² J.-S. Réal[®],² J.-S. Ricol,² C. Roca[®],¹ R. Rogly,³ T. Salagnac,^{2,¶} M. Sarrazin[®],^{5,6,**} V. Savu,³ S. Schoppmann[®],^{1,††} T. Soldner[®],⁷ A. Stutz,² and M. Vialat⁷

New Neutrino activity: coherent scattering

- Detect **C**oherent **E**lastic **N**eutrino **N**ucleus **S**cattering with reactor antineutrinos
- Measure nuclear recoil spectrum
 - with different detector materials:
 - Weinberg angle
 - Search for neutrino magnetic moment with sensitivity of $10^{-11} \, \mu_{B}$
 - Improve limits on new massive mediators Z'
 - Discover or exclude non-standard neutrino-quarks neutral-current interactions in the low-energy sector
 - Reduce uncertainties in the CENNS cross-section
 - Precise recoil spectrum for 235 U down to $E_v \sim 1$ MeV (nuclear physics processes in core, non-proliferation)

FOR SOCIETY

A Coherent Neutrino Scattering Program Detectors and Setup

CryoCube (French partners)

- Ionisation/heat for semiconductor bolometer (Ge, 27x30 g)
- 50 eV heat threshold demonstrated
- 10x improvement of ionization by **HEMT** preamps & optimisation

- Pulse shape of heat signal for superconducting metal (Zn, 9 x 40 g)
- New concept:
 - Excellent theoretical performance ($\Delta E/E$, particle ID) not yet demonstrated
 - Single channel readout -> scalable
- Currently preparation of experimental zone
- until spring 2023 installation of shielding
- Validation of shielding during 2023 reactor operation
- Installation and commissioning until autumn 2023

(2)Vertical scintillator panels (3) Cryogenic veto element

Outline

Neutrino activities

- STEREO (short base line neutrino oscillation experiment)
- RICOCHET (Experiment on coherent neutrino nucleus scattering)

UCN activities

- PF2 (Mirror neutron, qbounce, D2 cross section, VCN optics)
- Status of SuperSun and PanEDM

Cold Neutron activities

• PF1B (BRAND, PERKEOIII, Beam EDM, diffraction enhancement, new polarizer, optimizing VCN production/transport)

Thermal neutron activities

• S18 (which way experiments, split crystal interferometer)

Provides:

- High reliability during 150 days of reactor
- DC operation
- Complete UCN/VCN infrastructure
- Very versatile setups
- 4 beams of UCN
- 1 beam of VCN

Total output:

PF2/EDM: 733.000 cps (no corrections applied) ٠ (detector efficiency: 80%)

PF2/EDM

PF2/UCN

PF2/MAM

PF2/TES

15

in-flight velocity component vx [m/s]

peam port

PF2/EDM

PF2/UCN

PF2/MAM

PF2/TES

20

V_{x,peak}

[m/s]

8 16

0.00

8.04

0.006

9.479

0.017

8.412 0.004

V_x,mean

[m/s]

9.231 0.001

9.088

0.001

11.02

0.002

9.623 0.001

set: cycle 187 (02/2020)

V_x,rms

[m/s]

9.683

0.001

9.553

0.001

11.738

0.002

- PF2/UCN: 89.7% of PF2/EDM
 - PF2/MAM: 36.9% of PF2/EDM

velocity spectra of PF2 beam ports

PF2/TES: 05.9% of PF2/EDM

Setting limit for mirror neutrons at Press

10⁻¹⁶

10⁻¹⁷

10⁻¹⁸

10-19

 10^{-12} 10^{-11} 10^{-10} 10^{-9}

NEUTRONS

UCN storage [1]

UCN storage anomaly [5]

This work (preliminary)

 10^{-6}

 $\delta m \,[\text{eV}]$

 10^{-4}

MURMUR [2]

STEREO [3]

SNS [4]

10⁻⁷

 10^{-8}

W. SAENZ-AREVALO^a on behalf of the collaboration
G. Ban^a, J. Chen^a, P.-J. Chiu^b, B. Clément^c, M. Guigue^d, T. Jenke^e, P. Larue^c, T. Lefort^a, O. Naviliat-Cuncic^{a,f}, B. Perriolat^e, G. Pignol^c, S. Roccia^{c,e}, P. Schmidt-Wellenburg^g
^aLaboratoire de Physique Corpusculaire, Caen, France; ^bUniversity of Zurich, Zurich, Switzerland; ^cLaboratoire de Physique Subatomique et de Cosmologie, Grenoble, France; ^dLaboratoire de Physique Vucléaire et des Hautes Énergies, Paris, France; ^eInstitut Laue-Langevin, Grenoble, France; ^fMichigan State University, Michigan, United States; ^gPaul Scherrer Institute, Villigen, Switzerland
+ (∂m-µB_{ext})²

 H_2O pool

Liquid

 D_2 cold source

 D_2O tank

Fuel element

 $P_{nn'}(t) =$

qBounce: Gravity Resonance Spectroscopy at ULTRACOLD NEUTRONS FOR SCIENCE

Measurement of the total transmission cross section of UCN in sold ortho D₂

S. Döge, Fig. 2.1 & 4.2, Dissertation (TU München), 2019.

PHYSICAL REVIEW B 106, 054102 (2022)

SUPER

SuperSUN – a new high density source of UCN at ILL

From cold towards ultra-cold neutrons

Octagonal Supermirror neutron guide allowing to transfer rectangular guide neutrons into round converter

R&D laser welding of Ni+M3 Supermirror

Final converter

Coating with CYTOP for better UCN storage time

Replica/multilayer

Integration into stainless steel vessel for cryostat

Conversion volume destroyed by technical incident

-R&D towards a 3m long superconducting magnet SUPER

Simulations by M.Thomas (ILL)

ELYTT ENERGY

NEUTRONS FOR SOCIETY

Phase I implementation in ILL22 guide hall

Installation ready for commissioning once new converter volume is installed

Posters E. Chanel, Hanno Filter

Preparing interface of Phase I to PanEDM

- I. Neutron guide H523
- 2. Experiment platform
- 3. Magnetically shielded room
- 4. Clean room

Cold beam

MSR

- 5. Neutron guide and detection section
- 6. 3He Pumps
- 7. Ultra-cold neutron source SuperSUN

panEDM

1m

Wurm, 2021

Towards state of the art interferometry with VCN at PF

Interferometry with VCN: longer interaction times, larger area, no crystals

Development of efficient gratings

ULTRACOLD NEUTRONS FOR SCIENC

Outline

Neutrino activities

- STEREO (short base line neutrino oscillation experiment)
- RICOCHET (Experiment on coherent neutrino nucleus scattering)

UCN activities

- PF2 (Mirror neutron, qbounce, D2 cross section, VCN optics)
- Status of SuperSun and PanEDM

Cold Neutron activities

• PF1B (BRAND, PERKEOIII, Beam EDM, diffraction enhancement, new polarizer, optimizing VCN production/transport)

Thermal neutron activities

• S18 (which way experiments, split crystal interferometer)

Pf1b – cold neutron facility

10'x sensitivity enhancement by diffraction

0

0

 l_{s_3} (mm)

-20

20

20

40

40

0.06

-40

-20

20

0 l_{s3} (mm) 40

V.V. Voronin et al., Physics Letters B 809 (2020) 135739

A new advanced solid-state polarizer for cold neutrons

Towards new reflectors and moderators for VCN sources

EUROPEAN

SPALLATION SOURCE

Innovative moderator materials for VCN:

- Clathrates crystalline water-based solids •
- With guest molecules trapped inside cages •
- Weakly absorbing •
- Large albedo for cold neutrons •

Activities with cold neutrons at PF1b

- BRAND, BeamEDM, PERKEO, ASPECT (Talks K. Bodek, I. Schulthess, B. Maerkisch, U. Schmidt)
- Diffraction Enhancement with cold neutrons
- New solid state polarizer
- New reflector materials based on Nanodiamonds
- New VCN moderator materials (Poster of V. Czamler)
- Medical Applications: BNCT

Activities with cold neutrons at PF1b

- BRAND, BeamEDM, PERKEO, ASPECT (Talks K. Bodek, I. Schulthess, B. Maerkisch, U. Schmidt)
- Diffraction Enhancement with cold neutrons
- New solid state polarizer
- New reflector materials based on Nanodiamonds
- New VCN moderator materials (Poster of V. Czamler)
- Medical Applications: BNCT

- High-energy end of fission neutron spectrum: Irradiation ²³⁵U with (n,x) monitor foils
- High-energy end of gamma neutron spectrum

Outline

Neutrino activities

- STEREO (short base line neutrino oscillation experiment)
- RICOCHET (Experiment on coherent neutrino nucleus scattering)

UCN activities

- PF2 (Mirror neutron, qbounce, D2 cross section, VCN optics)
- Status of SuperSun and PanEDM

Cold Neutron activities

• PF1B (BRAND, PERKEOIII, Beam EDM, diffraction enhancement, new polarizer, optimizing VCN production/transport)

Thermal neutron activities

• S18 (which way experiments, split crystal interferometer)

Which way experiment at S18

1. Which way experiment via double slit:

• Measuring $p_1 = |\langle 1|\psi\rangle|^2$ directly in path $|1\rangle$ destroys interference

WIEN ATOMINSTITUT

• Better measure only in the exit beams $|\pm\rangle = \frac{1}{\sqrt{2}} (|1\rangle \pm |2\rangle)$

2. Which way via weak measurement:

- Mark particle in one path by spin rotation lpha
- Make $lpha\,$ small to maintain interference, measure many times
- Analyze spin \Rightarrow Weak Value of path 1 projection operator = Path-1 "presence": $\omega_{1\pm} = \frac{\langle \pm | \hat{\Pi}_1 \psi \rangle}{\langle + | y \rangle} = \frac{a_1}{a_1 \pm a_2}$

$$\frac{(-)}{\varphi}$$
 wak Measurement gives only ensemble average

3. Which way via weak measurement and feedback compensation:

• β compensates α and restores the initial spin state ("feedback": optimal β depends on exit path \pm)

$$\mathbf{u}_{\pm} = \frac{\beta_{\pm}}{\alpha}$$

 ω

NEUT

FOR SOCIETY

• pure final spin state measured \Rightarrow vanishing variance

 \Rightarrow Path presence applies to every single neutron.

e.g. asymmetric $a_1 = 2/\sqrt{5}$ $\omega_{1+} = 2/3$ $\omega_{1-} = 2$ beam splitter: $a_2 = 1/\sqrt{5}$ $\omega_{2+} = 1/3$ $\omega_{2-} = -1$

probability to reach final states: $\ p_+ = 9/10$ $\ p_- = 1/10$

 $p_{+}\omega_{1+} + p_{-}\omega_{1-} = p_{1}$

averaging weak values over final states \Rightarrow original probability

Demonstration of split crystal

phase shifter angle / deg

frequency / Hz

N O H

Μ

H. Lemmel et al., Journ. Appl. Cryst. 55 (2022) 870 -875

Next step: Building combined X-ray, Optical- and Neutron interferometer

Main activity of NPP: Particle Physics, Nuclear Physics, Instrumentation & Applications.