$\mathsf{PSI2022}$

LUXE - A new experiment to study non-perturbative QED in electronlaser and photon-laser collisions

K Fleck* on behalf of the LUXE collaboration 19/10/2022

*kfleck02@qub.ac.uk

Introduction

- Strong field quantum electrodynamics (SFQED) deals with the interaction of matter and intense electromagnetic fields
- Relatively new area of research pioneering SLAC E-144 experiment in 1996
- Has become more accessible with developments in laser and beam technologies
- Important for understanding extreme conditions in: plasmas, magnetars, future lepton colliders...
- Standard QED is very well tested e.g. electron magnetic moment; transition and non-perturbative regimes less so
- Need experiments to help theoretical understanding and test models

Review of SFQED Volkov states and the Furry picture

- QED is described by the Lagrangian density $\mathscr{L} = \bar{\psi}(i\gamma^{\mu}\mathscr{D}_{\mu} m)\psi \frac{1}{4}\mathscr{F}^{\mu\nu}\mathscr{F}_{\mu\nu}$
- $\mathscr{D}_{\mu} = \partial_{\mu} + i e \mathscr{A}_{\mu}$ is the covariant derivative; analogous to classical EM minimal coupling
- By separating the field term into background and external, the Lagrangian can be written as

$$\mathscr{L} = \bar{\psi} \left[i \gamma^{\mu} \partial_{\mu} - e \gamma^{\mu} \mathscr{A}^{(b)}_{\mu} - m \right] \psi - e \bar{\psi} \gamma^{\mu} \mathscr{A}^{ext}_{\mu} \psi -$$

Propagation of fermion in background field

Fermion external field interaction

Light-light interaction of the propagating fermion

Review of SFQED Perturbative, non-perturbative and inbetween

- Background field (e.g. a laser) is treated classically
- Infinite plane waves -> Volkov solutions to Dirac equation
- Exact in coupling α , but Volkov solutions depend nonlinearly on $\xi = \frac{e\sqrt{\langle a^2 \rangle}}{m}$
- New coupling ξ introduces different regimes:
 - $\xi \ll 1$ perturbative (standard QED)
 - $\xi \sim 1$ transition
 - $\xi \gg 1$ non-perturbative
- Critical field of SFQED $\varepsilon_{cr} = 1.32 \times 10^{18} \,\mathrm{V/m}$

The LUXE Collaboration

- LUXE (Laser Und XFEL Experiment) is a collaborative effort of 18 institutions
- Based at DESY and Eu-XFEL in Schenefeld and Hamburg, Germany
- Plan to use an high-intensity laser (up to 350 TW) and 16.5 GeV electron beam (Eu-XFEL) to explore less studied areas of SFQED
- CDR published in Feb 2021 and working towards TDR for late 2022
- Proposed to start data taking in 2026

Eu-XFEL electron beam

- Generates x-ray photons for 6 experiments
- 1.9 km LINAC accelerates electrons to multi-GeV energies 2700 electron bunches at 10 Hz
- LUXE is designed to be parasitic aim to use 16.5 GeV electrons with 1.5×10^9 electrons/bunch
- Only one of the 2700 bunches will be used

- LUXE will have two operating modes in each phase
- Electron-laser mode:
 - Electron beam interacts with laser directly at IP
 - Investigates non-linear Compton scattering and trident processes
- Gamma-laser mode:
 - Electron beam converted to bremsstrahlung by a converter target
 - Investigates non-linear Breit-Wheeler process BSM investigations are also planned

Measurement of SFQED processes What to measure?

- LUXE aims to observe the characteristics of SFQED processes as a function of ξ
 - Rate of Breit-Wheeler positron production
 - Appearance and position of Compton edge in photon and electron spectra
 - Polarisation-dependent shape effects
- Two phases to cover large range of ξ
 - Phase I 40 TW laser
 - Phase II 350 TW laser \bullet
- Large range of particle rates expected across LUXE system, from 10^{-3} to 10^{9} per second!

Measurement of SFQED processes How to measure?

Beyond the Standard Model - LUXE NPOD

- High photon fluxes ($\sim 10^9/{\rm s}$) expected
- Opport unity to perform BSM searches using t primary new physics production
- In parti investiç space i $\gamma_{B,L}/e^ \psi_{\delta}^{P}/\phi^{S}$ ψ_{δ}^{\pm} dump secondary new physics production γ_{L} ϕ^{P}/ϕ^{S} ψ_{δ}^{\pm} ψ_{δ}^{\pm}

10:00-10:30, 22/09/22 New Vistas in Photon₁Physics in Heavy-Ion Collisions

detector

detecto

16

Summary and Outlook

- LUXE will study a previously unexplored regime of strong field QED using high intensity optical lasers and the 16.5 GeV Eu-XFEL electron beam
- Design of experiment will allow for measurement of key SFQED processes such as non-linear Compton scattering and non-linear Breit-Wheeler processes in both the transition and non-perturbative regimes
- BSM investigations are also planned, utilising the high photon fluxes anticipated

- Passed stage 0 approval by DESY directorate
- Currently preparing TDR for publication and awaiting further approval stages
- Data taking proposed to start in 2026

Thank you for your attention!

• For more information:

CDR - <u>https://doi.org/10.1140/epjs/s11734-021-00249-z</u>

Conceptual Design Report for the LUXE Experiment

H. Abramowicz¹, U. Acosta^{2,3}, M. Altarelli⁴, R. Aßmann⁵, Z. Bai^{6,7}, T. Behnke⁵, Y. Benhammou¹,
T. Blackburn⁸, S. Boogert⁹, O. Borysov⁵, M. Borysova^{5,10}, R. Brinkmann⁵, M. Bruschi¹¹, F. Burkart⁵,
K. Büßer⁵, N. Cavanagh¹², O. Davidi⁶, W. Decking⁵, U. Dosselli¹³, N. Elkina³, A. Fedotov¹⁴, M. Firlej¹⁵,
T. Fiutowski¹⁵, K. Fleck¹², M. Gostkin¹⁶, C. Grojean^{*5}, J. Hallford^{5,17}, H. Harsh^{18,19}, A. Hartin¹⁷,
B. Heinemann^{†5,20}, T. Heinzl²¹, L. Helary⁵, M. Hoffmann^{5,20}, S. Huang¹, X. Huang^{5,18,20}, M. Idzik¹⁵,
A. Ilderton²¹, R. Jacobs⁵, B. Kämpfer^{2,3}, B. King²¹, H. Lahno¹⁰, A. Levanon¹, A. Levy¹, I. Levy²²,
J. List⁵, W. Lohmann^{‡5}, T. Ma²³, A.J. Macleod²¹, V. Malka⁶, F. Meloni⁵, A. Mironov¹⁴, M. Morandin¹³,
J. Moron¹⁵, E. Negodin⁵, G. Perez⁶, I. Pomerantz¹, R.Pöschl²⁴, R. Prasad⁵, F. Quéré²⁵, A. Ringwald⁵,
C. Rödel²⁶, S. Rykovanov²⁷, F. Salgado^{18,19}, A. Santra⁶, G. Sarri¹², A. Sävert¹⁸, A. Sbrizzi^{§28},
S. Schmitt⁵, U. Schramm^{2,3}, S. Schuwalow⁵, D. Seipt¹⁸, L. Shaimerdenova²⁹, M. Shchedrolosiev⁵,
M. Skakunov²⁹, Y. Soreq²³, M. Streeter¹², K. Swientek¹⁵, N. Tal Hod⁶, S. Tang²¹, T. Teter^{18,19},
D. Thoden⁵, A.I. Titov¹⁶, O. Tolbanov²⁹, G. Torgrimsson³, A. Tyazhev²⁹, M. Wing^{5,17}, M. Zanetti¹³,

TDR to be published soon

Review of SFQED Sauter-Schwinger effect

- Vacuum persistence probability $|\langle 0, t = \infty | 0, t = -\infty \rangle|^2$
- In 'classical' QED, this is unity; in SFQED, it is less than one generally
- Implies there is a possibility that the presence of a strong background field can generate lepton pairs

•
$$N_{pairs} = 2VT \frac{e^2 E^2}{(2\pi)^3} \exp\left(-\pi \frac{m^2}{eE}\right)$$
 for a static electric

- Defines the Schwinger limit: $E_S = \frac{m^2}{\rho} = 1.32 \times 10^{18} \text{ V/m}$
- Below $E_{\rm S}$ pair production is exponentially suppressed
- Above $E_{\rm S}$ pair production grows quadratically
- Not yet possible to reach experimentally -> Lorentz boosting techniques!

Euler-Heisenberg one-loop contribution to vacuum diagrams

c field

Review of SFQED Non-linear Compton scattering

Matrix element for a dressed electron to emit a single photon

$$S = -ie \int d^4x \, \bar{\psi}_{p'}(x) \gamma^{\mu} \epsilon_{\mu} \psi_p(x) \frac{\mathrm{e}^{ik \cdot x}}{\sqrt{2\omega}}$$

- Expansion using Bessel functions gives a set of momentum conservation equations
 {sk + q = q' + k' : s ≥ 1}
- Effectively, electron can absorb *s* virtual photons from the background field, then emit a photon -> total probability of emission involves a sum over *s*
- For $\xi \ll 1,$ multiple Compton edges appear
- For $\xi \gg 1$, emission becomes synchrotron-like

16

$$\xi = \frac{e}{m} \langle a^2 \rangle \quad \chi_e = \frac{e}{m^3} \sqrt{|\mathcal{F}_{\mu\nu} p^{\nu}|^2}$$

Review of SFQED Non-linear Breit-Wheeler production

- Breit-Wheeler production is related to Compton scattering by crossing symmetry -> matrix element can be found by appropriate re-substitution
- Similar set of conservation equations apply $\{sk' + k = q_{-} + q_{+} : s \ge 1\}$
- Unlike NLC scattering, NBW has an exponential suppression in the low χ_{γ} regime
- In quantum regime, scaling is the same this leads to SFQED cascades

- Ti:Sa 800 nm wavelength laser to be used
- CPA technique to provide ultra-short pulse
- LUXE will have two phases:
 - Phase 0 JETI40 (Jena's 40 TW laser)
 - Phase 1 commercial 350 TW laser
- Key parameters summarised in table
- Laser diagnostics energy, pulse length and spot size
- Aiming for $\leq 5\%$ uncertainty on intensity with 1 % shot-to-shot fluctuations

	40 TW, 8μm	40 TW, 3μm	350
Laser energy after compression (J)	1.2	1.2	
Laser pulse duration (fs)		30	
Laser focal spot waist w ₀ (µm)	8	3	
Fraction of ideal Gaussian intensity in focus (%)	0.5		
Peak intensity in focus ($\times 10^{20}$ Wcm ⁻²)	0.19	1.33	1
Dimensionless peak intensity, ξ	3.0	7.9	
Laser repetition rate (Hz)	1		
Electron-laser crossing angle (rad)		0.35	

Quantum parameter			
χ_e for $E_e = 14.0 \mathrm{GeV}$	0.48	1.28	
χ_e for $E_e = 16.5 \mathrm{GeV}$	0.56	1.50	
χ_e for $E_e = 17.5 \mathrm{GeV}$	0.6	1.6	

4.72

Laser Diagnostics

LUXE Simulations

- Programs used for simulation:

 - Geant4 and FLUKA general particle tracking Monte-Carlo codes -> Used for background estimation, radiation prediction and detector performances
- SFQED simulations utilise two computational approximations
 - LMA locally monochromatic approximation
 - LCFA locally constant field approximation

 Ptarmigan - SFQED Monte-Carlo code -> Used to simulate the electron/ photon - laser interaction at IP https://github.com/tgblackburn/ptarmigan