

Muonic atom spectroscopy with radioactive targets

Stella Vogiatzi On behalf of the muX collaboration*

17.10.2022

PSI2022: Physics of fundamental symmetries and interactions

^{*} Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland | Paul Scherrer Institut, Villigen, Switzerland | ETH Zürich, Switzerland | Johannes Gutenberg University Mainz, Germany | KU Leuven, Belgium | GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany | Helmholtz Institute Mainz, Germany | Institut für Kernphysik, Universität zu Köln, Germany | LKB Paris, France | University of Groningen, The Netherlands | University of Pisa and INFN, Pisa, Italy | University of Victoria, Canada | Perimeter Institute, Waterloo, Canada | CSNSM, Université Paris Sud, CNRS/IN2P3, Université Paris Saclay, Orsay Campus, France

Motivation: atomic parity violation in radium

- Atomic Parity Violation (APV) experiments in atoms probe the low transfer momentum Q region in the running of the $\sin^2(\theta_W)$ plot
- Weak interactions of nucleus and leptons enable APV transitions in atoms
- APV is magnified proportionally to $\gtrsim Z^{_3}$
 - \Rightarrow heavy atoms are good candidates
 - \Rightarrow experimental efforts to trap / laser cool ²²⁶Ra⁺

Hyperfine Interact. 199, 9 (2011) Phys. Rev. Lett. 122, 223001 (2019)

The absolute nuclear charge radius of 226**Ra** at the level of 0.2% is needed

 \Rightarrow muX aims to measure it using muonic atoms

Motivation: atomic parity violation in radium

- Atomic Parity Violation (APV) experiments in atoms probe the low transfer momentum Q region in the running of the $\sin^2(\theta_{\rm W})$ plot
- Weak interactions of nucleus and leptons enable APV transitions in atoms
- APV is magnified proportionally to $\gtrsim Z^3$
 - \Rightarrow heavy atoms are good candidates
 - \Rightarrow experimental efforts to trap / laser cool ²²⁶Ra⁺

Hyperfine Interact. 199, 9 (2011) Phys. Rev. Lett. 122, 223001 (2019)

The absolute nuclear charge radius of 226Ra at the level of 0.2% is needed

 \Rightarrow muX aims to measure it using muonic atoms

What about other radioactive elements? ^{- 248}Cm

Muonic atom spectroscopy

- Due to the higher muon mass, there is large overlap of the low-lying muonic states with the nuclear charge distribution
 ⇒ The energy of these levels is highly affected by the nuclear structure details
- The measurement of the muonic energy levels allows to extract properties of the nucleus such as the charge radius r_c:
 2p-1s transition most

 $r_{C}^{2} = \left\langle r^{2} \right\rangle = \frac{1}{Ze} \int d^{3}\vec{r} \,\rho(\vec{r}) \,r^{2}$ nuclear shape?

Muonic atom spectroscopy

- Due to the higher muon mass, there is large overlap of the low-lying muonic states with the nuclear charge distribution
 ⇒ The energy of these levels is highly affected by the nuclear structure details
- The measurement of the muonic energy levels allows to extract properties of the nucleus such as the charge radius rc:

Muonic atom spectroscopy

- Due to the higher muon mass, there is large overlap of the low-lying muonic states with the nuclear charge distribution
 ⇒ The energy of these levels is highly affected by the nuclear structure details
- The measurement of the muonic energy levels allows to extract properties of the nucleus such as the charge radius rc:

Where does this happen?

Where does this happen?

Where does this happen?

Spectroscopic quadrupole moment in ^{185,187}Re

Spectroscopic quadrupole moment in ^{185,187}Re

- Fitting of the theoretical predictions in the experimental spectrum with the quadrupole moment as a free parameter
- Cross checks in two HPGe datasets

Outlook: charge radius of 185,187Re

- Currently ongoing analysis of the 2p-1s hyperfine transitions in ^{185,187}Re for the extraction of its absolute nuclear charge radius
 - \Rightarrow has not been measured before
- Complicated hyperfine structure due to the dynamic effect

Outlook: charge radius of ^{185,187}Re

- Currently ongoing analysis of the 2p-1s hyperfine transitions in ^{185,187}Re for the extraction of its absolute nuclear charge radius
 - \Rightarrow has not been measured before
- Complicated hyperfine structure due to the dynamic effect

Towards the measurement of µg targets

- 1. μ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μ p
- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. µd moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

Inspired by the work of Strasser et al. and Kraiman et al.

- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. µd moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

Inspired by the work of Strasser et al. and Kraiman et al.

- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. µd moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

Inspired by the work of Strasser et al. and Kraiman et al.

- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. µd moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

Inspired by the work of Strasser et al. and Kraiman et al.

- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. µd moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

- 1. μ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μ p
- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. μ d moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

- 1. μ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μ p
- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. µd moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

- 1. μ stops in 100 bar of H₂ + 0.1-1.5% D₂ & forms muonic hydrogen μ p
- 2. transfer to deuterium $\mu p \rightarrow \mu d$
- 3. μ d moves almost freely in the H₂ gas (Ramsauer-Townsend effect¹)
- 4. transfer to high-Z element $\mu d \rightarrow \mu Z$ when hitting target & emission of x rays during the atomic cascade

muX detectors

The gas cell

The muon and electron counters

Schematics of detectors setup

muX detectors

2019 measurement of ²⁴⁸Cm and ²²⁶Ra

- 8 Miniball¹ germanium clusters and 2 standalone germanium detectors making a total of 26 HPGe crystals were operating _{1Eur. Phys. J. A 49, 40 (2013)}
- Radiation protection restrictions at PSI allow for 16 µg of ²⁴⁸Cm and 5.5 µg of ²²⁶Ra
- Targets were produced by the radiochemistry group of the University of Mainz

²⁴⁸Cm target

²²⁶Ra targets

15.46 µg, uniformly distributed

1.35 µg, uniformly distributed

4.37 µg, ring structure

2019 measurement of ²⁴⁸Cm and ²²⁶Ra

- 8 Miniball¹ germanium clusters and 2 standalone germanium detectors making a total of 26 HPGe crystals were operating _{1Eur. Phys. J. A 49, 40 (2013)}
- Radiation protection restrictions at PSI allow for 16 µg of ²⁴⁸Cm and 5.5 µg of ²²⁶Ra
- Targets were produced by the radiochemistry group of the University of Mainz

15.46 µg, uniformly distributed

²²⁶Ra targets

1.35 µg, uniformly distributed

4.37 µg, ring structure

How to get to good S/B ratio at high energies?

How to get to good S/B ratio at high energies?

$2p \rightarrow 1s$ hyperfine transitions in ²⁴⁸Cm

September 2022 measurement

- Extraction of the nuclear charge radius of ^{185,187}Re
- Determination of the ²⁴⁸Cm nuclear charge radius
- Remeasure ²²⁶Ra

- Measure ³⁹K, ⁴⁰K, ⁴¹K to improve laser spectroscopy results
- Measure low-Z elements (up to neon) using high resolution x-ray detectors to improve the charge radius results

- Extraction of the nuclear charge radius of ^{185,187}Re
- Determination of the ²⁴⁸Cm nuclear charge radius
- Remeasure ²²⁶Ra

- Measure ³⁹K, ⁴⁰K, ⁴¹K to improve laser spectroscopy results
- Measure low-Z elements (up to neon) using high resolution x-ray detectors to improve the charge radius results

- Extraction of the nuclear charge radius of ^{185,187}Re
- Determination of the ²⁴⁸Cm nuclear charge radius
- Remeasure ²²⁶Ra

- Measure ³⁹K, ⁴⁰K, ⁴¹K to improve laser spectroscopy results
- Measure low-Z elements (up to neon) using high resolution x-ray detectors to improve the charge radius results

- Extraction of the nuclear charge radius of ^{185,187}Re
- Determination of the ²⁴⁸Cm nuclear charge radius
- Remeasure ²²⁶Ra

- Measure ³⁹K, ⁴⁰K, ⁴¹K to improve laser spectroscopy results
- Measure low-Z elements (up to neon) using high resolution x-ray detectors to improve the charge radius results

Thank you!

Backup Slides

Dynamic effect in ¹⁸⁵Re

Dynamic effect in ¹⁸⁵Re

Dynamic effect in ¹⁸⁵Re

Theory limitations

- Charge radius can be extracted with excellent relative precision For ²⁰⁸Pb: $r_c = \langle r^2 \rangle^{\frac{1}{2}} = 5.5031(11) \text{ fm}$ $\Rightarrow 2 \cdot 10^{-4}$ relative precision
- Experimental accuracy at the level of ~0.1 keV

Transition	Kessler (Ref. 9)	Hoehn (Ref. 27)	This experiment	
$2p_{3/2}$ -1 $s_{1/2}$	5 962.770(420)		5962.854(90)	
$2p_{1/2}$ -1 $s_{1/2}$	5 777.910(400)		5778.058(100)	
$3d_{3/2}-2p_{1/2}$	2 642.110(60)	2642.292(23)	2 642.332(30)	
3d 5/2-2p 3/2	2 500.330(60)	2500.580(28)	2 500.590(30)	
$3d_{3/2}-2p_{3/2}$	2 457.200(200)		2 457.569(70)	

- Limitation from theory \Rightarrow nuclear polarisation effect
- Due to the electrostatic interaction of the muon and nucleus the system is excited to virtual excited states resulting in the increase of the binding energy of the levels
- Limited knowledge of the highly excited nuclear states
 nuclear polarisation determines the charge radius accuracy

If nuclear polarisation calculations are improved, more precise charge radius results can be extracted

TABLE II. Theoretical nuclear polarization corrections in ²⁰⁸Pb.

Energy (MeV)	I"	$\frac{B(E\lambda)}{(e^2b^{2\lambda})}$	$\begin{bmatrix} 1s_{1/2} \\ (eV) \end{bmatrix}$	2s _{1/2} (eV)	2p _{1/2} (eV)	2p _{3/2} (eV)	$3p_{1/2}$ (eV)	3p _{3/2} (eV)	3d _{3/2} (eV)	3d _{5/2} (eV)
2.615	3-	0.612	135	12	90	84	26	26	111	-63
4.085	2+	0.318	198	20	182	180	76	84	6	4
4.324	4+	0.155	14	1	8	7	2	2	1	1
4.842	1-	0.001 56	7	1	-9	- 8	0	0	1	1
5.240	3	0.130	27	2	16	15	5	5	2	2
5.293	1-	0.002 04	9	2	- 27	- 19	0	-1	1	1
5.512	1-	0.003 BO	16	3	90	- 53	-1	-1	1	1
5.946	1-	0.000 07	0	0	3	-30	0	0	0	0
6.193	2+	0.050 5	29	3	22	21	7	7	0	0
6.262	1-	0.000 24	1	0	3	5	0	0	0	0
6.312	1 -	0.000 22	1	0	3	4	0	0	0	0
6.363	1	0.00014	1	0	2	2	0	0	0	0
6.721	1-	0.00075	3	1	6	7	0	1	0	0
7.064	1-	0.001 56	6	1	9	11	-1	-1	0	0
7.083	1-	0.00075	3	1	4	5	-1	-1	0	0
7.332	1	0.002 04	8	1	10	11	-2	-2	0	0
Tota	l low-lyir	ng states	458	48	233	242	111	117	123	- 53
13.5	0-	0.047 872	906	315	64	38	24	15	1	0
22.8	0+	0.043 658	546	147	43	26	15	10	0	0
13.7	1	0.537 672	1454	221	786	738	255	258	66	54
10.6	2+	0.761 038	375	37	237	222	67	68	33	- 30
21.9	2+	0.566709	207	21	108	99	29	29	8	7
18.6	3-	0.497 596	77	7	40	36	11	11	3	2
33.1	3	0.429 112	53	5	25	23	7	7	2	1
	> 3 ^a		176	15	80	71	21	21	4	4
Tota	l high-lyi	ng states	3794	768	1383	1253	429	419	117	98
	Total			816	1616	1495	540	536	240	45

"Values from Ref. 7. Positive NP values mean that the respective binding energies are increased.

Target production in 2019

Table 1: Summary of all tar	gets produced	for the m	uX beamtii	me 2019. The given productior	L		
method ED refers to electrodepostion and DoD refers to drop on demand printing							
The maximum allowed quantities in the experimental halle of PSI are 16 $\mu { m g}$ for $^{248}{ m Cm}$							
(given the presence	e of ²⁴⁶ Cm) and	d 5.5 $\mu \mathrm{g}$ fo	r ²²⁶ Ra. Se	e text for more details.			
Target #	Nuclide	m / μg	A / kBq	Method			
Cm-MP2-D	oD Cm-248	15.91	2.50	ED+DoD			
Cm-MP3-D	oD Cm-248	15.46	2.43	ED+DoD			
Cm-Aceton	1 Cm-248	13.72	2.15	DoD (acetone)			
Cm-Aceton	2 Cm-248	13.94	2.19	DoD (acetone)			
Ra-MP1	Ra-226	1.35	49.5	ED+DoD			
Ra-MP2	Ra-226	2.50	91.6	ED			
Ra-MP3	Ra-226	4.37	160.1	ED+DoD			

muX Progress Report 2020 (2019)

Drop-on-demand printing device at the Johannes Gutenberg-Universitat Mainz

Neutron background

 Another source of background at ~6 MeV: neutrons emitted during the nuclear capture of the muon e.g.

$$\begin{split} \mu^- + (N,Z) &\to (N+1,Z-1)^* + \nu_\mu \\ (N+1,Z-1)^* &\to (N,Z-1)^* + n \end{split}$$

- Those neutrons interact with the Ge crystal and create a continuous background of negative slope
- Effort for only low-Z material in the gas cell

Beam time	2018	2019	
Target backing material	copper	glassy carbon	
Polystyrene shileding	No	yes	

Optimisation of the x-ray yield using a gold target

- A 0.2 mg Au target was mounted inside the gas cell
- The amount of the 2p-1s µAu x rays was measured by scanning the:
 - $cD \rightarrow D_2$ admixture in H₂ gas (cD)
 - $p \rightarrow$ stopping position of the muon beam
 - Maximum yield for 27.25 MeV/c & 0.25% D_2
 - Measurements and simulations are in good agreement
- The time distribution of the observed 2p_{1/2}-1s_{1/2} gold x ray after transfer for different D₂ concentrations was simulated

PhD thesis of A. Skawran Simulations by J. Nuber

