Searching for the permanent electric dipole moment using laser-cooled francium atoms

Hiroki Nagahama On behalf of the Fr EDM experiment@RIKEN

PSI2022

Searching for CP violations beyond the SM

Matter-antimatter asymmetry

Non-zero Electric Dipole Moment (EDM) : CP violations beyond the SM

Using Fr atoms to search CP violations

Heavy paramagnetic atom : electron/nuclear EDM \sim enhanced

$$K \sim \frac{d_{atom}}{d_e} \sim Z^3 \alpha^2 \sim |\psi_s(0)|^2 V Z^5 \alpha^2 \frac{e}{a_0^2}$$

Francium (²¹⁰Fr)

- Heaviest alkali: atomic number 87
- Radioactive isotope (RI) : $t_{1/2} \sim 3$ min.
- Simple atomic structure: -> direct laser cooling
- Electron EDM enhancement: 799 largest amongst any ground-state atoms

	1*		ſ		alkali r	netals		🗌 ot	her me	tals		oble gas	5
Per	Ia 1			Π	alkalin	e earth	metals	i 🔲 ot	her non	metals	🗌 la	nthanic	d
1	H	2 II a			transit	tion met	tals	ha	logens		a	otinides	
2	3 Li	4 Be											
3	11 Na	12 Mg	2 111 - 111 -	5 9** 9**	4 IVa ★ IVb	5 Va Vb	6 VIa VIb	7 VIIa VIIb	*	9 VIIIa VIIIb		11 Ib	
4	19 K	20 Ca	21 Sc	:	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	
5	37 Rb	38 Sr	39 Y		40 Zr	41 Nd	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	
6	55 Cs	56 Ba	57 La		72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	
7	87 Fr	88 Ra	89 A (104 ****	105 ****	106 ****	107 ****	108 ****	109 ****	110 ****	111 ****	
				6	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	
				_	90	91	92	93	94	95	96	97	

Measurement of Fr EDM using optical lattice

Fr EDM apparatus at RIKEN

Fr ion beam production & detection

Neutralization of Fr⁺ ions

Neutralization efficiency depends on Y surface condition

Foord, J. S., *et al.*, Surf. Sci. **94**(1980)339.

Optimization of the neutralization efficiency is still ongoing

Laser setup for magneto optical trap (MOT)

Nuclear EDM measurement using ²²¹Fr

Electron EDM in paramagnetic atoms

 $d_{\text{atom}} = K d_e + R C_{S,P,T} + S$

Sandars, P.G.H., Phys. Lett. **22**(1966)290. ¹⁰

²²¹Fr produced from the alpha decay of ²²⁵Ac

Making ²²¹Fr Source @ RIBF hot lab

Molecular Plating Method Molecular plating method in 2021 Achieved **77.9%** efficiency, Anode (Pt) with **20.4 MBq** + High Voltage ΗV Actinium nitraté $Ac(NO_3)_3$ Cathode (Pt) GND Silicon rubber

²²¹Fr MOT@RIBF hot lab

Summary

- Aiming for the EDM measurement using 210 Fr and 221 Fr ($d \sim 10^{-30} e$ cm).
- ²¹⁰Fr project
 - Development of the Fr production apparatus started since 2018.
 - Succeeded 5×10^{6} /s ²¹⁰Fr ion beam production in 2020 (×10 than CYRIC)
 - Neutralizer and MOT were installed and observed ⁸⁷Rb MOT in 2021.
 - Ready for ²¹⁰Fr MOT
- ²²¹Fr project
 - ²²¹Fr generator (²²⁵Ac) is developed in 2021.
 - ²²¹Fr MOT apparatus developed in Sep/2022.
 - Ready for ²²¹Fr MOT

Thank you for your attention

Fr-EDM collaboration@RIKEN

Center for Nuclear Study, University of Tokyo
Y. Sakemi
H. Nagahama
K. Nakamura

Y. Kotaka

K. Kamakura

School of Science, University of Tokyo N. Ozawa

S. Nagase

M. Fukase

D. Uehara

Paul Scherrer Institute K. S. Tanaka

Arts and Sciences, University of Tokyo Y. Matsuda T. Nakashita T. Aoki

Backup Slides

EDM measurement

Current upper limit : eEDM

Fukuyama, T., Int. J. Mod. Phys. A **27**(2012)1230015.

Safronova, M. S. *et al.*, Rev. Mod. Phys. **90** (2018)025008.

Fuyuto, K. et al., Phys. Lett. B 755(2016)491.

SUSY mass

• Fr EDM \sim can explore the mass scale > TeV region : 10^{-30} ecm

CP violation effect in ThO/Ra/Fr

EDM and CP violating interactions in atoms

Source of the CP violation in the EDM

Particle cooling technique ~ in progress

EDM and CP violating interactions in atoms

Electron EDM enhancement in alkali atoms

"Atomic Physics: An Exploration through Problems and Solutions" (2008)

Experimental overview at RIKEN RIBF

Fr trapping and co-magnetometer

• Cold Fr source with MOT (Magneto-Optical Trap) ~ technique established

 $H = -\mu \frac{s}{|s|} \cdot B - \left[d \frac{s}{|s|} \cdot E \right]$

• Dual atoms co-magnetometer

Magnetic field shift measurement

Dual atoms co-magnetometer (Rev. Sci. Inst. 89 (2018) 123111)

- Rb/Cs atoms trapped simultaneously
- Zeeman shift/Vector light shift accurate measurement

Cold Fr source

Laser cooled Fr ~ stable supply Laser frequency stabilization Offset locking of trapping and repumping laser

Dual atoms co-magnetometer

Predicted systematic errors

Energy shift	Shift item	Systematic error	This project
		(10^{-29} ecm)	
Zeeman shift	magnetic field	1.34	dual species magnetometer
	applied current	$1.34 \ge 10^{-5}$	
	leakage current	0.04	
	Johnson noise	$4.6 \ge 10^{-5}$	
Vector light shift	polarization	0.46	dual species magnetometer
Atom collision shift	collision	0.14	optical lattice
	shift in OL	$1.6 \ge 10^{-7}$	
Geometrical phase		$4.6 \ge 10^{-6}$	cooling
Black body radiation		$9.2 \ge 10^{-4}$	cooling

Magnetic field measurement accuracy \sim 0.1 uT achieved

Ultra-precise spectroscopy

Light source

Light source

