Muon flavor violation and EDM in light of muon g-2

George Wei-Shu Hou^{*} and Girish Kumar[†] National Taiwan University, Taipei 10617, Taiwan

Presented at PSI 2022, Villigen, Switzerland. Based on: EPJC 81, 1132 (2021), JHEP 01, 092 (2022) *wshou@phys.ntu.edu.tw, [†]girishk@hep1.phys.ntu.edu.tw

I. Introduction

- \Rightarrow Recent confirmation of muon g 2 anomaly by Fermilab may harbinger new era in μ/τ physics.
- Measured $a_{\mu} \equiv (g-2)/2$ larger than SM value by $\sim 4\sigma$:

$$\Delta a_{\mu} = a_{\mu}^{\mathsf{Exp}} - a_{\mu}^{\mathsf{SM}} = (251 \pm 59) imes 10^{-11}$$

Science of the second s

Diagram for muon g-2 ($\ell = \mu$).

Three main ingredients:

 $\checkmark m_H \neq m_A$

- ✓ $ρ_{\tau\mu} ≈ ρ_{\tau\mu} \simeq 20 λ_{\tau}^{\ddagger}$, where $λ_{\tau} \simeq 0.01$ in SM.
- Near alignment limit i.e., mixing $c_{\gamma} \cong 0$ between h-H.
- \implies Same mechanism predicts μ and τ flavor violation;

[‡]CMS $pp \rightarrow H, A \rightarrow \tau \mu$ more stringent than Belle $\tau \rightarrow \mu \gamma$! [WSH, Jain, Kao, GK and Modak, PRD 104 (2021) 075036]

II. Muon electric dipole moment

- (small) CP violation in SM rooted in Yukawa.
- * In g2HDM, no ad hoc Z_2 symmetry; Yukawa matrix of exotic doublet Φ' ("SM doublet" Φ gives SSB) cannot be diagonalized simultaneously.

 $\mathcal{L}_{Yukawa} \supset \overline{f}_i \rho_{ii}^f \left[H + i \operatorname{sgn}(Q_f) A \right] P_R f_j + \text{h.c.}, \quad (f = u, d, \ell)$

- ***** Extra Yukawa matrices ρ^f are nondigonal and complex. Complexity of $\rho_{\tau\mu}\rho_{\mu\tau}$ will induce muon EDM.
- Defining $\rho_{\tau\mu}\rho_{\mu\tau} = |\rho_{\tau\mu}\rho_{\mu\tau}| \exp(\phi_{CP})$, muon EDM (dashed lines) allowed by muon g - 2 (red):

III.
$$\mu
ightarrow e\gamma$$
, $\mu
ightarrow 3e$, $\mu N
ightarrow eN$

- Same one-loop mechanism (with $\ell = e$) generates $\mu \to e\gamma$, which depends on $\rho_{\tau\mu}$ and $\rho_{\tau e}$.
- * MEG bound $\mathcal{B}(\mu \to e\gamma) < 4.2 \times 10^{-13}$ already rules out $\rho_{\tau e} \gtrsim 3\lambda_e$.

MEG II can detect $\mu
ightarrow e\gamma$ for $ho_{ au e}\simeq\lambda_e$ ($\simeq3 imes10^{-6}$)!!

PSI can detect μ EDM in g2HDM, if one-loop muon g-2

IV. $\tau \rightarrow \mu \gamma$

- $\diamond \rho_{\tau\mu}$ and $\rho_{\mu\tau}$ will also induce $\tau \to \mu\gamma$ if $\rho_{\tau\tau}$ present.
- Solution Belle limit $\mathcal{B}(\tau \to \mu \gamma) < 4.2 \times 10^{-8}$ hints at $\rho_{\tau\tau} < (3-5)\lambda_{\tau}$.

Belle II can detect $au o \mu\gamma$ for natural value $ho_{ au au} \sim \lambda_ au$

 $ho_{ au\mu}=
ho_{\mu au}$

 $ho_{ au\mu}=
ho_{\mu au}$

* $\mu e \gamma$ dipole probed further by $\mu \rightarrow 3e$ and $\mu N \rightarrow eN$, even if $\rho_{\tau e}$ order of magnitude smaller than λ_e .

 $rac{\mathcal{B}(\mu o 3e)}{\mathcal{B}(\mu o e\gamma)} \simeq rac{lpha}{3\pi} \left(\log rac{m_{\mu}^2}{m_e^2} - rac{11}{4}
ight); \qquad \Gamma_{\mu o e} \simeq \pi D^2 \, \Gamma(\mu o e\gamma)$ $D ext{ related to lep-nucleus overlap integral}$

 $\Rightarrow \mu N \rightarrow eN$ esp. important: access ρ_{qq} quark couplings via tree-level H, A exchange, by varying Z, A.

V. Caveat: alignment limit?!

- $h \to \tau \mu \text{ search } \implies |\rho_{\tau\mu} c_{\gamma}| \lesssim 0.1 \lambda_{\tau};$ Large $\rho_{\tau\mu} \sim 20\lambda_{\tau}$ for muon $g - 2 \implies c_{\gamma}$ vanishing.
- Recall *fermion mass-mixing hierarchy* also not anticipated: $m_1 \ll m_2 \ll m_3$; $|V_{ub}|^2 \ll |V_{cb}|^2 \ll |V_{tb}|^2$; $m_b/m_t \ll 1$.

 $\diamond c_{\gamma} \rightarrow 0$: a new symmetry in Higgs sector to protect flavor!?

N.B.: Alignment (small c_{γ}) itself emergent (not anticipated).

* $\tau \mu \gamma$ dipole also probed by $\tau \to 3\mu$, but $\tau \to \mu \gamma$ is leading, in contrast to $\mu \rightarrow e$ sector.

VI. Discussion

 $\,\,$ If $ho_{ au\mu}$ not large, but $\sim\lambda_{ au}$, then one-loop mechanism mute.

 \implies Two-loop Barr-Zee diagrams dominate $\mu \rightarrow e, \tau \rightarrow \mu$ processes.

Extra Top Yukawa $ho_{tt} \sim \lambda_t$ together with $ho_{ au\mu} =
ho_{\mu au} \sim \mathcal{O}(\lambda_{ au})$ induce $\tau \rightarrow \mu \gamma$ accessible at Belle II. [WSH/GK, PRD 102 (2020) 115017]

Similarly,
$$ho_{\mu e} =
ho_{e\mu} \sim \mathcal{O}(\lambda_e)$$
 gives $\mu o e\gamma$ measurable at MEG II.

Acknowledgement

The work of WSH and GK is supported by NSTC 111-2639-M-002-002-ASP of Taiwan; WSH further thanks NTU grants 111L104019 and 111L894801.