

Contribution ID: 205

Type: Poster

Muon flavor violation and EDM in light of muon g-2

Tuesday, 18 October 2022 17:17 (1 minute)

Recent developments in the muon g - 2 anomaly may bring about a renaissance of μ (and τ) physics. The anomaly can be accounted for in the general two Higgs doublet model (without *ad hoc* Z_2 symmetry) via one-loop exchange of nondegenerate scalar H and pseudoscalar A bosons that have flavor changing neutral Yukawa couplings $\rho_{\tau\mu}$ and $\rho_{\mu\tau}$ at $\sim 20\lambda_{\tau}$, i.e. 20 times the usual τ Yukawa coupling. The complexity of $\rho_{\tau\mu}\rho_{\mu\tau}$ leads to rather large μ EDM that can be detected by the PSI program. A similar diagram with $\rho_{\tau e} \simeq \rho_{e\tau} = calO(\lambda_e)$ induces $\mu \to e\gamma$, right into the sensitivity range of MEG II. The $\mu e\gamma$ dipole can be further probed by $\mu \to 3e$ and $\mu N \to eN$, where the latter may access extra diagonal quark Yukawa couplings ρ_{qq} . For the τ lepton, $\tau \to \mu\gamma$ can probe $\rho_{\tau\tau}$ down to λ_{τ} or lower, while $\tau \to 3\mu$ can probe $\rho_{\mu\mu}$ down to $calO(\lambda_{\mu})$. The absence of $h(125) \to \tau\mu$ implies the h-H mixing angle c_{γ} has to be close to vanishing. While seemingly artificial, it may call for a symmetry behind the emergent "alignment" ($c_{\gamma} \to 0$) phenomenon. If $\rho_{\tau\mu}$ and $\rho_{\mu\tau}$ are at the more *natural* $calO(\lambda_{\tau})$ so the one-loop mechanism is not behind the muon g-2 anomaly, μ and τ flavor violation remain interesting, but become a bit less rosy.

Primary author: HOU, George W.S. (National Taiwan University)
Presenter: HOU, George W.S. (National Taiwan University)
Session Classification: BBQ - Drinks & Posters