The Mu3e vertex detector: prototyping, cooling, and upcoming production

Thomas Rudzki¹⁾ for the Mu3e collaboration²⁾

27

1) Physikalisches Institut, Universität Heidelberg

2) Paul Scherrer Institut, Uni Bristol, Uni Geneva, Uni Heidelberg, KIT Karlsruhe, Uni Liverpool, UCL London, Uni Mainz, Uni Oxford, ETH Zürich, Uni Zürich

Physics motivation of Mu3e:

Search for charged lepton flavor violation in the decay:

 $\mu^+ \rightarrow e^+ e^- e^+$

In the Standard Model including neutrino mixing, this process is highly suppressed with a branching fraction of $\mathcal{B} < 10^{-54}$ (Figure below).

The vertex detector:

• Two innermost layers of the HV-MAPS based pixel detector

Why gaseous helium as coolant for the pixel detectors?

- Signal decay has to be distinguished from: $\mu^+ \rightarrow e^+ e^- e^+ \nu \bar{\nu}$
- Only possible for sufficient momentum resolution.
- Resolution is multiple-Coulomb scattering dominated

little material budget: $\sim 0.1 \% X_0$ per tracking layer negligible scattering in passive part of detector gaseous cooling adds least material

 $0.18 \, \rm kg/m^3$

density:

- Thus, an observed signal would indicate the presence of new physics.
- 2 tracking layers: radii at 23.3 mm and 29.8 mm
- MuPix11 chips: ♦ Area: 20.66 x 23.18 mm² **♦** Thickness: 50 µm
- Pixel ladders: \diamond Based on ~ 70 µm thin HDIs (aluminium-polyimid) Provide power, data lines, and only support structure

Thermal-mechanical mock-up:

- Mechanical copy of vertex detector
- HDIs equipped with 50 µm thin silicon heater chips.

Successful operation of a 50 µm thin pixel detector with gaseous helium cooling:

- Mu3e integration run 2021 with around 70 functional MuPix10 chips (50 µm thickness).
- PCB-based ladders instead of thin HDIs (simplified geometry). Correlations between two tracking layers for two different target configurations

silicon heater chip

silicon heater HDI

Cooling studies:

Heat loads: 215 mW/cm² & 350 mW/cm² Gas flow: 2 g/s helium, flow from chip 0 to 5 Flow channels: Between the 2 layers & around the outer layer Map of all chip temperatures (see below) Measurement:

Temperature difference (powered to unpowered state). LM35 sensor glued on active pixel matrix.

Disclaimer:

- PCB ladders behave as heat sinks differently than the final HDI ladders.
- Helium distribution not as in final detector.
- Results can't be directly compared to thermal-mechanical mock-up.

Mass flow (g/s)

Vertex detector production:

Quality control:

- Qualification of MuPix sensor before assembly by probe card
- Optical survey of all detector components by digital microscopes
- Pixel ladders and modules operated with final readout electronics in lab

MuPix probe card

Ladder & module assembly:

Chip placement on ladder assembly tool

HDI glued onto 6 chips

TREAM 11171 | Paris 200 3 3 2000 1 1 1 2000 2000

LM35 sensor

on US L1-2

Layer 0 module assembly tool

Physics of fundamental Symmetries and Interactions - PSI 2022