

Deuterated Clathrate Hydrates as Novel Moderator Material for a Source of Very Cold Neutrons

Valentin Czamler, Michael Marek Koza, Richard Wagner, Oliver Zimmer

Nuclear & Particle Physics | Institut Laue-Langevin valentin.czamler@ill.fr

A Case for VCN

- Intense sources of Very Cold Neutrons (VCN) could be a game changer for neutron scattering techniques and fundamental physics research with neutrons
- VCNs increase the instrumental resolution at fixed geometry, and the intensity at a fixed resolution ^a
 Particle-physics experiments take advantage of higher VCN fluxes:

 → search for neutron anti-neutron oscillations (nnbar)
 Figure of merit: FOM ∝ λ^{2 b}

Clathrate Hydrates

- Inclusion compounds that are able to host guest molecules in cages that are formed by networks of hydrogen-bonded water molecules
- Unusually-large crystalline structures: \rightarrow large **Bragg cut-off** wavelengths λ
 - \rightarrow high albedo for the whole cold neutron-range
- Stable up to high temperatures (gas hydrates: \sim 140 K, THF hydrates: \sim 280 K)

Clathrate I Clathrate II

HighNess

EUROPEAN

SPALLATION

SOURCE

- \rightarrow In-beam neutron (EDM) search ^c
- \rightarrow In-beam UCN sources
- \rightarrow Experimental search for new fundamental forces d

- Feasibility study of a dedicated VCN moderator at the ESS
 - \rightarrow HighNESS project ^e
- Deuterated Clathrate Hydrates are a promising candidate

Structure	cubic	tc cubic
Unit cell (UC)	a = 12.03 Å	a = 17.31 Å
Space group	Fd3m	Pm3n
# H ₂ O per UC	46	136
Cages per UC	6 L + 2 S	8 L +16 S
Bragg cut-off λ	24 Å	20 Å
Guest molecules e.g.	CH_4, H_2, O_2	$ O_2 + C_4 H_8 O (THF)$
	-	-

Fig. 2: C-II clathrate hydrate

VCN Transmission Experiments

- Study of reflectivity and transmittivity in the cold and VCN range for fully deuterated samples
- ToF setup on ILL's PF2-VCN beam (results below) \rightarrow Reiteration after the upgrade
- Further experiments are to be conducted on beams of cold neutrons (ILL-PF1B and PSI-BOA)

Fig. 3: Experimental Layout PF2-VCN

^aJ. M. Carpenter and B. J. Micklich, Proceedings (2005)
^bD.G. Phillips et al., Phys. Rep. V. 612, p. 1-45 (2016)
^cF. M. Piegsa, Phys. Rev. Lett., 108.181801 (2012)
^dF. M. Piegsa, American Phys. Soc., 88.045502 (2013)
^eV. Santoro et al., arXiv:2204.04051v1 (2022).

Scattering Function $S(q, \omega)$

- Scattered intensity is measured as a function of both wave-vector transfer q and energy transfer $\hbar\omega$
- Slices of S(q, ω) along q and ω contain information about the structure and dynamics of the material

Fig. 4: Computed cross section of TDF-Clathrate (by Sara Isaline Laporte (MIB) & Shuqi Yvan Xu (ESS))

Fig. 5: Preliminary experimental results of the total cross section on PF2-VCN

Time of Flight Spectroscopy on Panther & IN5

Incident beam properties:

0.40

0.35 -

0.30

· 0.25 -

Intensity [a. 0.20 -0.15 -

0.10

0.05

0.00

IN5: 2 Å (E_i = 19 meV), 3 Å (E_i = 9 meV)

Inelastic Scattering, $E_i = 9$ [meV]

Panther: 1 Å (E_i = 76 meV), 2 Å (E_i = 19 meV)

- Contrast variation protonated & deuterated sample variants: 17D₂O · TDF, 17H₂O · TDF, 17D₂O · THF, 17H₂O · THF
- Vanadium samples (normalization to absolute units)
- > Data from the neutron scattering function $S(q, \omega)$ serve as a benchmark for new scattering kernels in **NCrystal**

Fig. 1: $17D_2O \cdot TDF$ measured on Panther

Acknowledgements

HighNESS is funded by the European Framework for Research and Innovation Horizon 2020, under grant agreement 951782.

and MD-Simulations

--- TDF \cdot D₂O

+ TDF \cdot H₂O

+ THF \cdot D₂O

- THF \cdot H₂O

Fig. 6: Instrument-Layout: Panther

Fig. 8: $E_i = 19 \text{ meV}, T = 1.5K$, **Panther**

Fig. 7: E_i = 9 meV, T = 1.5K, **IN5**

Energy Transfer [meV]