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Abstract: ▸ Precision force measurements give some of the tightest limits 
on hypothetical dark energy and dark matter interactions, including the QCD axion. 

▸ Currently, there is a sensitivity gap between Casimir experiments and torsion balance measurements (3–30 µm). 
▸ The Casimir And Non-Newtonian force EXperiment (CANNEX) is the worldwide only metrological force experiment 

implementing the geometry of plane parallel plates. 
▸ This geometry maximizes the generated force and sensitivity for interfacial forces, such as the Casimir effect, while at 

the same time allowing competitive measurements of volumetric interactions, such as gravity. 
▸ Here, we present the proof of principle, an updated design, and prospective results of this experiment.
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Casimir effect [Sedmik2021, Klimchitskaya2019]
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Improved seismic and thermal isolation: Seismic attenuation:
Technology from gravitational wave detectors
Two-stage Non-linear Geometric Anti-Springs (GAS)
and Inverted pendula allow 
~100 mHz resonance frequencies and low-frequency damping.

Improved core: 2D schematic (real setup has a 120° symmetry)

Seismic attenuation:
Performance for proof of principle and new design

Improved core: Features
Active thermal controls for all parts:
▸ < 1 mK accuracy on all parts
▸ 10 K difference between the two plates possible 
In-situ surface cleaning and compensation 
against electric surface `patch' potentials:
▸ Ar ion bombardment removes adsorbates
▸ UV irradiation re-distributes electrons
▸ In-situ Kelvin probe (not shown)
▸ Active feedback-compensation of the

global surface potential 
All-optical measurements to measure distances
and sensor extension:
▸ Distance measurements using Fabry Pérot cavities 

and wavelength modulation
▸ Parallelism measurement using 3 cavities
▸ Reference cavity for gas pressure correction
Synchronous measurement of pressure and gradient:
▸ Pressure P(a) from sensor extension zs
▸ Pressure gradient  from resonance frequency shift

Why a classical setup is still competitive
in times of quantum experiments:
▸ Amplification factor for force generation: 1023

▸ Systematic errors can be controlled and quantified very well
▸ Ideal ge++ometry allows closed-form solutions for many theories 

and eases experiment/theory comparison.

Linear mechanical force sensor:
▸ Mechanical mass-spring system 1 cm² force gen. area
▸ Etched from a silicon single crystal
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Proof of Principle
Force gradient measurements:

Success despite technical problems:
▸ Range of separations can be covered → No problems with dust and parallelism
▸ Sensitivity as expected → Detection principle demonstrated

Detailed Error Budget
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Mechanical system:
▸ Q-Factor: 15,000
▸ Strong sensitivity to vibrations

Sensor response:

Improvement:
factor 200 Improvement:
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Prospects:
▸ First metrological Casimir force measurements in the thermal regime
▸ Clear distinction between all dielectric models at all separations
▸ First quantitative  measurement of non-equilibrium effect  [Klimchitskaya2019]
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Dark matter:  Dark energy:

Prospects:
▸ 1 order of magnitude improvement

scalar and vector interactions
▸ New scalar-pseudoscalar limits possible (not shown, [Klimchitskaya2019b])
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