

Cooling Ions using Electrons

"Sympathetic cooling of highly charged ions in a Penning trap using a self-cooled electron plasma"

Jost Herkenhoff, Menno Door, Sergey Eliseev, Pavel Filianin, Kathrin Kromer, Daniel Lange, Sven Sturm, Klaus Blaum

Contact: jost.herkenhoff@mpi-hd.mpg.de

Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

Penning traps are used to store charged particles for fundamental research e.g. in the following applications:

- Mass measurements [1]
- Magnetic moment measurements [2, 3, 4]
- Quantum technology [5]

Efficient particle cooling is essential to all of these experiments. A new technique uses an electron plasma stored in a Penning trap to cool a single highly charged ion in a macroscopically distant Penning trap down to very low temperatures.

This promises significant improvements in precision.

Why cold ions?

- Smaller relativistic shifts
- Less influence from field imperfections due to smaller oscillation amplitude
- Smaller thermal phase space volume -> Higher precision frequency determination

[1] S. Eliseev, et al., Phys.Rev.Lett., 115, 062501 (2015)

- [2] S. Sturm, et al., Phys.Rev.Lett., 107, 023002 (2011)
- [3] A. Mooser, et al., Nature, 509,596 (2014)
- [4] C. Smorra, et al., Nature, 550, 371 (2017)[5] Bruzewicz, C. D. et al., Appl. Phys. Rev. 6, 021314 (2019)

First tast_cating of the FICOTRAD or

Radial confinement

of charged particles using a strong, homogeneous magnetic field:

Free cyclotron frequency: $\nu_{\bullet} = \frac{q}{R_{0}}$

Axial confinement

using an harmonic electrostatic potential:

Axial frequency:

$$\nu_z = \frac{1}{2\pi} \sqrt{\frac{2qC_2U_0}{m}}$$

Superposition of fields

leads to three independent eigenmotions:

 $\nu_c^2 = \nu_+^2 + \nu_z^2 + \nu_-^2$

1. Cyclotron cooling

- Up to 10³ electrons are stored in a dedicated Penning trap.
- Due to their very high cyclotron frequency of approx. 195 GHz at B₀=7 T, their cyclotron modes dissipate energy due to cyclotron radiation.

Cooling time constant $\tau_+ = 50\,\mathrm{ms}$

Equilibrium temperature $T_{+} = 4.2 \, \mathrm{K}$

Average Landau level

 $\langle n_+
angle = 0.45$

Optical access

2. Sideband coupling

A quadrupolar RF-field at $v_{RF} = v_{+} - v_{z}$ couples and **thermalizes the axial mode** of the electrons with their well cooled cyclotron mode.

$$\langle n_z \rangle = 0.45$$
 $T_z = T_c \frac{\nu_z}{\nu_+} = 0.5 \,\mathrm{mK}$

The wavelength of the sideband drive is 1.5 mm, which is on the order of the trap dimensions.

The trap acts like a cavity, whose modes must be

carefully planned.

3. Coupling to ion

- A single highly charged ion is stored in a separate Penning trap.
- Interconnecting certain electrodes leads to **coupling** of the electron-axial and ion-cyclotron motion due to induced **image currents**.
- Potential depth of electron trap can be tuned so that v_z of electrons precisely math v_+ of ion.

 $T_{+,\text{ion}} = 0.5 \,\text{mK}$

The ion ends up mostly cooled down to its motional ground-state*

 $\langle n_+ \rangle_{\rm ion} = 0.45$

*ideally

Written entirely in

julia

NEW PENNING-TRAP EXPERIMENT

- Dedicated to realizing electron cooling
- Optimized for rapid design iterations
- Experimental chamber can be easily accessed by sliding out to the right

7 T Magnet

Trap chamber

4 K Cryocooler

NEW SIMULATION FRAMEWORK

github.com/jherkenhoff/Penning.jl

Motivation:

- Simulating the electron-cooling technique from first principles.

Features:

- Symplectic integration
- Integrated circuit simulator
- N Body simulations with interactions
- Multiple interconnected Penning traps
- Arbitrary excitation fields

Evample studies:

