Neutron lifetime experiment using a pulsed neutron source at J-PARC

Takanori Mogi (The University of Tokyo) on behalf of the J-PARC neutron lifetime collaboration

Motivations

- Neutron decays into electron, proton and antineutrino $(n \rightarrow p + e^- + \overline{v_e})$ in $\tau_n = 878.4 \pm 0.5 \text{ s}$ (PDG2022).
- Neutron lifetime dominates:
 - ⁴He abundance in the Big Bang Nucleosynthesis
 - V_{ud} term of CKM matrix
- There is a discrepancy of $9.5 \text{ s} (4.6\sigma)$ between the results of two methods.

Gas Induced background

• Scattered neutron makes background electrons via the (n, γ) reactions at ⁶LiF wall.

SCHOOL OF SCIENCE THE UNIVERSITY OF TOKYO

- The amount of gas induced background is 4.6 times different between measured and calculated value.
 - Measured BG: $S_{\text{gas BG}}/S_{\beta} = 4.6$ %
 - MC calculation: $S_{\text{gas BG}}/S_{\beta} = 1.0$ %
- Uncertainty due to this difference is +2/-14 s.

- The cause of this discrepancy is not yet settled.
- It is called "Neutron Lifetime Puzzle". (Unknown systematics?, new physics?)
- New experiment with a <u>different method</u> is in progress.

<u>Neutron lifetime experiment at J-PARC</u> -

- Neutron lifetime experiment using pulsed neutron beam at J-PARC MLF BL05 (NOP) have been performed.
- The apparatus consists of two components:
- Spin Flip Chopper (SFC)
- Divide polarized neutron beam into some bunches by flipper coils

Gas induced BG ratio

EX

EX avg.

- MC calc.

Low gas pressure measurement

- To reduce gas scattered neutrons, measurements with lower operating gas pressure have been taken place.
 - Gas pressure of 50 kPa instead of the conventional 100 kPa.
- The amount of gas induced BG is reduced to 59 ± 11%.
 - 100 kPa: $S_{\text{gas BG}}/S_{\beta} = 4.6 \pm 0.2$ %
 - 50 kPa: $S_{gas BG}/S_{\beta} = 2.7 \pm 0.5$ %
- Systematical error for gas BG
 <u>can be reduced to 60%</u> by
 lower gas pressure operation.

and magnetic supper mirrors.

- Bunches are shorter than the TPC and injected into the TPC.
- Time Projection Chamber (TPC) [NIMA 799, 187-196]
- Consist of MWPC, PEEK flame, and ⁶LiF internal wall.
- Filled by gas mixture of ${}^{4}\text{He}$, CO₂ and ${}^{3}\text{He}$.
- Measure decay electrons and ${}^{3}\text{He}(n,p){}^{3}\text{H}$ reactions, or neutron flux, **simultaneously**.

- First physics result
 - Neutron lifetime is determined as below:

·Low energy gamma measurement

- Difference in the number of gas induced background events suggests the presence of unaccounted events.
 - Candidate of the background is low energy γ -ray from ⁶LiF wall.
 - ${}^{6}\text{Li}(n,\alpha){}^{3}\text{H} \rightarrow {}^{19}\text{F}(t,t){}^{19}\text{F}^{*}, {}^{19}\text{F}(\alpha,\alpha){}^{19}\text{F}^{*}, {}^{19}\text{F}(t,p){}^{21}\text{F}^{*}$ or ${}^{19}\text{F}(t,n){}^{21}\text{Ne}^{*}$
- Measured γ -rays intensity by irradiating neutron to ⁶LiF plate.
- Evaluation of the amount of γ -rays from ⁶LiF is ongoing.

<u>Summary and prospects</u>

v_0	Velocity of neutron
σ_0	Cross section of ${}^{3}\text{He}(n,p){}^{3}\text{H}$
ho	Number density of ³ He
S _{He}	Number of 3 He $(n, p){}^{3}$ H events
S _β	Number of β decay events
Е	Efficiency
$v_0: 5333 \pm 7$ barn @ $v_0 = 2200$ m/s	

• First result of this experiment (2014-2016):

 $\tau_n = 898 \pm 10(\text{stat.}) + 15/-18(\text{sys.})[s]$ [PTEP 2020, 123C02]

- Consistent with beam and storage method.
- Need to improve systematical uncertainties.

- We have performed lifetime measurements until 2022.
- All acquired data corresponding to a <u>statistical accuracy of 2.0 s</u>.
 - Statistics of 2.7 s (100 kPa meas.)
 - Statistics of 3.0 s (50 kPa meas.)
- Our goal is to determine lifetime with an accuracy of 1.0 s (0.1%).
- Statistical accuracy of 0.1% <u>can be</u> <u>achieved within 110 days</u> of measurement.
- Uncertainty for gas BG is <u>reduced by about</u>
 <u>half</u> by lower gas pressure operation.
- Systematics is under improving.

