PAUL SCHERRER INSTITUT

Proton Structure through

the Two-Photon Exchange

Vladyslava Sharkovska

Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

1. Motivation

2. Proton Structure in HFS

The leading order (LO) in lpha HFS of the nS-levels is given by the Fermi energy $E_{
m F}$. The subleading contributions can be split into QED, electroweak and strong corrections:

$$\Delta E_{\rm HFS}(nS) = \frac{E_{\rm F}}{n^3} (1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm strong}), \quad E_{\rm F} = \frac{8\alpha}{3a^3} \frac{1+\kappa}{mM}, \qquad (1)$$

with M the proton mass, m the lepton mass, κ the proton anomalous magnetic moment, lpha the fine structure constant and $a = 1/(\alpha m_r)$ the Bohr radius with $m_r = mM/(m+M)$.

The proton structure, i.e. the strong correction, can be divided into three terms: Zemach radius, recoil, and polarizability contributions: ſ

Hydrogen

charge and magnetization distributions, ϱ_E and ϱ_M , and the electromagnetic form factors, G_E and G_M .

 $- E(\Delta_{pol.})$

— Ε(Δ_{LT})

— E(Δ_{TT})

— E(Δ₁)

 $- E(\Delta_2)$

On one hand, the possible cause for the discrepancy might lie in the scarce data for the proton spin structure function g_2 , which enter the dispersive method. On the other, the tension between the two approaches might vanish when including the next-to-leading-order (NLO) BχPT.

Hydrogen

The LO contribution is given by the following pion-nucleon loop diagrams [6]:

with $K_1(x,Q^2)$, $K_2(x,Q^2)$, $K_{F_2}(x,Q^2)$ being the kernel functions, Q^2 the photon virtuality, $x = Q^2/(2M\nu)$ the Bjorken variable with ν the lab-frame photon energy, x_0 the pion-production threshold and $F_2(Q^2)$ the Pauli form factor.

BχPT is a low-energy effective-field theory (EFT). An important requirement for a reliable EFT prediction is that the contributions from beyond the EFT applicability scale (here: $Q_{max} > m_{\rho} = 775$ MeV) have to be within the expected uncertainty. At LO in BxPT, $~\Delta_1$ and $~\Delta_2$ are numerically small and one has to consider instead the contributions from One way to refine the theory predictions is to use a scaling procedure based on the empirical 1S HFS in H. The Zemach radius and polarizability effects scale essentially with the reduced mass of the bound state m_r . At LO in BxPT, the numerically large contributions Δ_{LT} and Δ_{TT} satisfy the expected scaling behaviour at the level of 1 and 10 %, respectively.

1.0

1.5

[5] F. Hagelstein, V. Lensky and V. Pascalutsa, in preparation. [6] J. M. Alarcon, V. Lensky and V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852.

Theory Prediction

N Sort

Ktrox A

4. Guiding the Experiment

Measurements A precise theory prediction is needed to guide the experiment. Presently, the CREMA collaboration will need to cover a frequency search range of 40 GHz in comparison to the narrow linewidth of 200 MHz. It will require up to 8 weeks to search for the transition and further 3 weeks to acquire the necessary statistics.

5. Checking the Theory

- Discriminate between theory predictions for polarizability effect
- disentangle Zemach & polarizability effect by combining 1S HFS in H & μ H
- Test HFS theory

• combining 1S HFS in H & μ H with theory prediction for polarizability effect

TABLE I. Determinations of the proton Zemach radius R_Z , in units of fm.

ep scattering		µH 2S hfs		H 1S hfs	
Lin et al. '21	Borah et al. '20	Antognini et al. '13	LO ΒχΡΤ	Volotka et al. '04	LΟ ΒχΡΤ
$1.054^{+0.003}_{-0.002}$	1.0227(107)	1.082(37)	1.040(33)	1.045(16)	1.010(9)

for the figure and the table see Ref. [5]