Recovery of Photon Detection Efficiency of SiPMs in the liquid xenon detector by annealing

S. Ban, F. Ikeda, T. Iwamoto, S. Kobayashi, A. Matsushita, T. Mori, W. Ootani, A. Oya, Y. Uchiyama, K. Yamamoto, T. Yonemoto

The University of Tokyo, ICEPP, contact : bansei@icepp.s.u-tokyo.ac.jp

VUV-Sensitive MPPC (SiPM) developed by Hamamatsu

- Hamamatsu Photonics developed SiPM (VUV-MPPC) which sensitives to VUV light ($\lambda \sim 170$ nm) for the MEG II experiment
- Photon Detection Efficiency (PDE) : >20% (at manufactured)

Decrease of Photon Detection Efficiency (PDE) in beam environment

- In total, 4092 VUV-MPPC are used In the liquid xenon detector **E0.085** for gamma-ray measurement
- It turned out that PDE of VUV-MPPC decreases in muon beam environment
 - the cause is under investigation (radiation damage?)
- In 2021 run, the averaged PDE decreased from 8.5% to 5.6%
- Low PDE (< 2%) worsen the sensitivity of MEG II experiment

MPPC PDE vs Irradiation time

2021 data

Recovery of PDE by annealing

- Annealing (heating) procedure recovers PDE
 - Joule heating by the current of VUV-MPPC itself can be used to heat up itself
- Strong correlation exists between recovery ratio of PDE for VUV light and visible light
- [Recovery ratio for VUV light] = 10 * [Recovery ratio for visible light]
- Can be used for monitor of degree of recovery
- Annealing for small number of VUV-MPPC was conducted in 2019 as a test

Mass annealing

- Annealing for almost all VUV-MPPC in the liquid xenon detector was proceeded during the beam off period in 2022
- ~240 MPPC are annealed at once for one set of annealing, ~36 hours per one set -
- ~1.75 W per channel

making current to VUV-MPPCs by irradiating blue LED light

RpDI

- Because of the temperature limitation of the detector material, detector temperature was monitored by thermo-sensors inside of the detector
- LED data for monitoring were taken during cooling time

Result of the annealing

- PDE was evaluated using alpha-ray data
 - alpha-ray sources are placed inside the detector
- PDE distribution of the MPPC face of the detector
 - Effect of temperature gradient is shown (at the top)

- PDE of each channel before/after the annealing and estimated PDE value by visible LED
 - Match well with the PDE value after the annealing
 - Usefulness of monitor by visible LED is shown

- Averaged PDE : $5.6\% \rightarrow 15.6\%$

- Decrease of PDE of the VUV-MPPCs were shown in the beam time and it was recovered by mass annealing during the beam off period in 2022
- Averaged PDE of VUV-MPPC : 5.6% (at the last of 2021) \rightarrow 15.6 ± 2%
- Mass annealing method is established, and we can execute "sustainable" experiment by conducting the annealing procedure if needed