

The mercury co-magnetometer in the n2EDM experiment

Wenting Chen¹, on behalf of the nEDM collaboration

¹Paul Scherrer Institut, Villigen, Switzerland

Introduction of a laser-based mercury co-magnetometer

- Aim: correct the neutron frequency for the drifts of the magnetic field
- Optical pumping ¹⁹⁹Hg, flip Hg-spin, measure the precession frequency f_{Hg}
- Substitute $f_{\text{Hg}} = \frac{\gamma_{\text{Hg}}}{2\pi} B_0$ into the ratio $R = \frac{f_n}{f_{\text{Hg}}} = \left| \frac{\gamma_n}{\gamma_{\text{Hg}}} \right| \mp \frac{|E|}{\pi \hbar f_{\text{Hg}}} d_n$
- Use R to calculate d_n

$$m_F = -3/2 m_F = -1/2 m_F = 1/2 m_F = 3/2$$

Optical pumping process of ¹⁹⁹Hg, a fermionic isotope of mercury

To MSR, n2EDM measurement

Laser source: frequency stabilization

Test two locking schemes:

- Doppler-free saturated spectroscopy \bullet with frequency modulation
- Sub-Doppler dichroic atomic vapor • laser lock

Alternative locking scheme requiring magnetic field

Locking with frequency modulation technique

Photo of the locking scheme

Mercury absorption lines

Zoom-in view of the Doppler-free peak

Laser path to the experimental area

- Challenge: Free-space propagation > 10 m
- Transit points: Boxes with foam protecting optics from acoustic waves
- In future: Fibre test for the pump beam; guiding laser to chambers lacksquare

Detection scheme + Measurement

- Spin polarize ¹⁹⁹Hg atoms \bullet
- Release Hg into precession chambers \rightarrow Hg "cohabits" with UCNs
- Apply $f_{\rm RF} \approx 8$ Hz \rightarrow Flip the Hg spin by $\pi/2$ \bullet
- Hg free precession \rightarrow UV beams traversing two chambers

• PD signal:
$$A(t) = a e^{-\frac{c}{T_2}} \sin(2\pi f_{\text{Hg}}t + \phi_0) \rightarrow \text{extract } f_{\text{Hg}}$$

Differential PD signal

Sketch of measurement scheme

Hg related systematic effect in the n2EDM experiment

Dominant effect from the motional field $\overrightarrow{B_{\rm m}} = \vec{v} \times \vec{E}/c^2$

According to the Spin relaxation theory: $\delta \omega = \delta \omega_{B^2} + \delta \omega_{BE} + \delta \omega_{E^2}$ – quadratic terms can be mostly canceled with the double chamber design. $- \delta \omega_{BE} \propto \frac{\partial B_0}{\partial z} E \implies d_{n \leftarrow Hg}^{\text{false}} = \left| \frac{\gamma_n}{\gamma_{Hg}} \right| d_{Hg}^{\text{false}} = \left| \frac{\gamma_n}{\gamma_{Hg}} \right| \frac{h}{4\pi E} \delta \omega$

 \rightarrow Study the relationship between $d_{n \leftarrow Hg}^{false}$ and the magnetic field gradient

Alternative solution: tune the B_0 field to a "magic" value to cancel $d_{n \leftarrow Hg}^{false}$ out

