Sebastian Burri, Gurtej Kanwar, Marcus Petschlies, Urs Wenger + ETMC
Institute for Theoretical Physics, University of Bern

Muon g-2

- 4.2σ tension, hadronic contributions dominate 43×10^{-11} theory uncertainty.
$\triangleright \mathrm{HVP}$ at $O\left(\alpha^{2}\right): 40 \times 10^{-11} \mathrm{err}$
\triangleright HLbL at $O\left(\alpha^{3}\right): 17 \times 10^{-11} \mathrm{err}$
- Fermilab E989 expects $15 \times 10^{-11} \mathrm{err}$
- Need to reduce theory uncertainties on hadronic contributions

Figure 1: Tension between theory and experimental estimates of the muon $\mathrm{g}-2$ [1].

Pseudoscalar-pole contribution

- HLbL decomposes into several contributions, $a_{\mu}^{\mathrm{HLbL}}=a_{\mu}^{P-\text { pole }}+\ldots$

$$
\begin{aligned}
a_{\mu}^{P-\text { pole, (1) }=} & \int_{0}^{\infty} d Q_{1} d Q_{2} \int_{-1}^{1} d \cos \theta w_{1}\left(Q_{1}, Q_{2}, \cos \theta\right) \\
& \times F_{P \gamma \gamma}\left(-Q_{1}^{2},-\left(Q_{1}+Q_{2}\right)^{2}\right) F_{P \gamma \gamma}\left(-Q_{2}^{2}, 0\right) \\
a_{\mu}^{P-\text { pole, (2) }=} & \int_{0}^{\infty} d Q_{1} d Q_{2} \int_{-1}^{1} d \cos \theta w_{2}\left(Q_{1}, Q_{2}, \cos \theta\right) \\
& \times F_{P \gamma \gamma}\left(-Q_{1}^{2},-Q_{2}^{2}\right) F_{P \gamma \gamma}\left(-\left(Q_{1}+Q_{2}\right)^{2}, 0\right)
\end{aligned}
$$

Analytically known weight functions.

- Non-perturbative transition form factors $F_{P_{\gamma \gamma}}\left(q_{1}^{2}, q_{2}^{2}\right)$ required.
- Leading contributions from $\pi^{0}, \eta, \eta^{\prime}$.

Pseudoscalar transition form factors

Figure 2: Transition form factor from $P \in\left\{\pi^{0}, \eta, \eta^{\prime}\right\}$ to two photons.

- Data from CELLO [2], CLEO [3], BaBar [4, 5], Belle [6] for singly-virtual $F_{P \gamma \gamma}\left(-Q^{2}, 0\right)$ at $Q^{2} \gtrsim 1.0 \mathrm{GeV}^{2}$.
- Doubly virtual and low- Q^{2} essentially unconstrained from experiment. However, upcoming BES-III results are promising.
- Complementarity: doubly virtual, low- Q^{2} easier than singly virtual, large- Q^{2} on the lattice.

TFFs from lattice QCD

- Euclidean time current-current vacuum transition amplitude

$$
\tilde{A}_{\mu \nu}(\tau)=\langle 0| j_{\mu}\left(\tau ; \mathbf{q}_{1}\right) j_{\nu}(0 ; \mathbf{0})|P(\mathbf{p})\rangle
$$

- Laplace transform

$$
\epsilon^{\mu \nu \rho \sigma} q_{1 \rho} q_{2 \sigma} F_{P \gamma \gamma}\left(q_{1}^{2}, q_{2}^{2}\right)
$$

$$
=-i^{n_{0}} \int_{-\infty}^{\infty} d \tau e^{\omega_{1} \tau} \tilde{A}_{\mu \nu}(\tau)
$$

Figure 3: Three-point function for $F_{P_{\gamma \gamma}}$

- Extrapolation from finite-volume "orbits" in $\left(q_{1}^{2}, q_{2}^{2}\right)$ plane by conformal z-expansion.

Lattice QCD setup

- $N_{f}=2+1+1$ twisted clover, Iwasaki gauge action, physical quark masses.

ensemble	$L^{3} \cdot T / a^{4}$	$m_{\pi}[\mathrm{MeV}]$	$a[\mathrm{fm}]$	$a \cdot L_{x}[\mathrm{fm}]$	$m_{\pi} \cdot L_{x}$
cB072.64	$64^{3} \cdot 128$	140.2	0.080	5.09	3.62
cC060.80	$80^{3} \cdot 160$	136.7	0.068	5.46	3.78
cD054.96	$96^{3} \cdot 192$	140.8	0.057	5.46	3.90

Figure 4: ETMC ensembles used in this calculation.

- Analysis for π^{0} : several lattice spacings, continuum limit in progress.
- Analysis for η : preliminary results on cB64, finer lattices in progress.
- η^{\prime} currently too noisy to extract reliable data on these ensembles.

Systematic errors

- Several analysis choices (e.g., fit window, fit model, z-expansion order)
- AIC-weighted model averaging, with CDF trick to separate syst./stat. errors, per lattice ensemble used.
- Continuum extrapolation yields additional systematic error.

Results: π^{0}

Figure 5: Form factor results from ONE analysis choice.

Figure 6: Continuum extrapolation.

- Currently analyzing additional statistics on cB64 (rightmost point, Fig. 6).

Results: η

Figure 9: Comparison with known theoretical results.

Figure 8: Singly virtual form factor results.

- Preliminary results do not include lattice discretization uncertainties.

Conclusions \& Outlook

- Our results for the doubly virtual and low- Q^{2} pseudoscalar TFF are complementary to experimental values.
\triangleright Future combined fits may be of interest.
- This is the first lattice calculation with physical quark masses.
\triangleright We validate π^{0} lattice results extrapolating from unphysical masses [7].
\triangleright Results for the η are a first lattice calculation.
- Future directions:
\triangleright Vary lattice setup for better kinematic coverage.
\triangleright Address noise problems with measurements of the η^{\prime} ?

References

[1] T. Aoyama et al. Phys. Rept., 887:1-166, 2020.
[2] H. J. Behrend et al. Z. Phys. C, 49:401-410, 1991.
[3] J. Gronberg et al. Phys. Rev. D, 57:33-54, 1998.
[4] Bernard Aubert et al. Phys. Rev. D, 80:052002, 2009.
[5] P. del Amo Sanchez et al. Phys. Rev. D, 84:052001, 2011.
[6] S. Uehara et al. Phys. Rev. D, 86:092007, 2012.
[7] Antoine Gérardin, Harvey B. Meyer, and Andreas Nyffeler. Phys. Rev. D, 100(3):034520, 2019
[8] Andreas Nyffeler. Phys. Rev. D, 94(5):053006, 2016.
[9] G. W. Bennett et al. Phys. Rev. D, 73:072003, 2006.
[10] B. Abi et al. Phys. Rev. Lett., 126(14):141801, 2021.
[11] Gernot Eichmann, Christian S. Fischer, Esther Weil, and Richard Williams. Phys. Lett. B, 797:134855, 2019.
[12] Khépani Raya, Adnan Bashir, and Pablo Roig. Phys. Rev. D, 101(7):074021, 2020.
[13] Pere Masjuan and Pablo Sanchez-Puertas. Phys. Rev. D, 95(5):054026, 2017.

