$\xlongequal[\substack{\text { RIKEN's } \\ \text { Programs for }}]{\overline{\text { Ren }}}$

Takuhiro Fujiie ${ }^{[1,2]}$

Takuya Hosobata ${ }^{[2]}$, Michael Huber ${ }^{[3]}$, Masaaki Kitaguchi[1,4], Hirohiko M. Shimizu ${ }^{[1]}$, Masahiro Takeda[2], Robert Valdillez ${ }^{[5]}$, Yutaka Yamagata ${ }^{[2]}$, Albert Young ${ }^{[5]}$
${ }^{1}$ Nagoya Univ., ${ }^{2}$ RIKEN, ${ }^{3}$ NIST, ${ }^{4}$ Nagoya Univ. KMI, ${ }^{5}$ North Carolina State Univ.

Principle and Motivations

The Pendellösung interferometry using slow neutron is observed by dynamical diffraction in a perfect crystal on Bragg condition of Laue geometry. The diffracted neutrons are described by 4 wave functions (1), in which the interference between the α state and β state is called the Pendellösung interferogram. The intensity fringe in the central part provides the phase shift acquired by neutrons (2). The averaged crystal potential v_{Q} is obtained from this phase shift, which potential includes the following physical parameters.

$$
\begin{equation*}
v_{Q}=\left(\frac{4 \pi}{a^{3}} \sum_{v} e^{i Q \cdot x_{v}}\right) e^{-W}\left(b_{N}+\left[Z-f_{\mathrm{e}}(Q)\right] b_{\mathrm{ne}}+b_{5}(Q)\right) \tag{2}
\end{equation*}
$$

Debye-Waller factor (DWF) B It accounts for the thermal motion of the atoms in the lattice There is potentially-interesting condensed matter physics.
$\left\langle e^{i \vec{Q} \cdot \vec{u}}\right\rangle=e^{-W}=\exp \left[-\frac{1}{16 \pi^{2}} B Q^{2}\right]$

Nuclear scattering length b_{N}
This is the main contribution of $b(Q)$, which accounts for neutron and nucleon scattering. This value is measured by neutron interferometers
$V(\boldsymbol{r})=\sum_{j} \frac{2 \pi \hbar}{m} b_{N} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{j}\right)$

Mean square charge radius $\left\langle r_{n}^{2}\right\rangle$
Determinations of $b_{\text {ne }}$ can be used to study the neutron's internal charge distribution or as a parameter in chiral effective field theory (EFT) studies of light nuclei.
$\left\langle r_{n}^{2}\right\rangle=-\left.6 \frac{\mathrm{~d} G_{\mathrm{E}}^{n}}{\mathrm{~d} Q^{2}}\right|_{Q^{2}=0}=\frac{-3 A}{2 m_{\mathrm{P}}^{2} c^{2}}=86.34 b_{n e}$

Fifth force b_{5}
The beyond standard model predicts the "Fifth force" as exotic interactions. Yukawa modified gravity is assumed as the general form of the fifth force, where α_{G} is the coupling constant and λ_{5} is the interaction length.

$$
\begin{array}{r}
V(r)=-G \frac{m_{1} m_{2}}{r}\left(1+\alpha_{G} e^{-r / \lambda_{5}}\right) \\
b_{5}(Q)=-\alpha_{G}\left(\frac{2 m_{n}^{2} M G}{\hbar^{2}}\right) \frac{\lambda_{5}^{2}}{1+\left(Q \lambda_{5}\right)^{2}}
\end{array}
$$

Experimental Results

The experiments were carried out on the NG7 Neutron Interferometry and Optics Facilities "NIOFa" in NIST NCNR. The averaged crystal potentials were measured in the (111), (220), and (400) lattice planes of the silicon perfect crystals. To remove the dominant uncertainty source which is the absolute crystal thickness, the Pendellösung experiment was combined with the Mach-Zehnder type Neutron Interferometer (NI) experiment.
NI experiment (B) Pendellösung experiment (A,C) $\begin{gathered}N ; \text { Atomic density of sample } \\ \delta \text { Angle of phase flag }\end{gathered}$

$\Rightarrow \frac{\phi_{P}}{\phi_{I}}=\frac{v_{Q} D}{v_{0} D}=\frac{b(Q) D}{b(0) D}=e^{-W(Q)}\left(1-\left(Z-f_{\mathrm{e}}(Q)\right) \frac{b_{\mathrm{ne}}}{b(0)}+\frac{b_{5}(Q)-b_{5}(0)}{b(0)}\right)$
The clear interference fringes were measured from the NI experiment (D) and Pendellösung experiment (E). The total uncertainty $<10^{-4}$ of the phase shift is less than the theoretical value of each term (F). These parameters of $B,\left\langle r_{n}^{2}\right\rangle$, and b_{5} constraints were determined by Q-dependence of eq. (3). The measured $\left\langle r_{n}^{2}\right\rangle$ is consistent with the PDG value. On the other hand, the B of DWF is not consistent with the previous result of the x-ray measurement (G). It means the suggestion of breakdown in the rigid atom approximation. The constraints on the strength of the Yukawa modification to gravity were improved by an order of magnitude over the 20 pm to 10 nm length scale range (H).

The crystal was processed to a flat \& smooth surface to obtain clear fringes.
Ultra-high precision machining \& Chemical etching

Conclusion and Future Plan

We explore the existence of exotic interactions predicted by the beyond standard model by precise measurement of interactions acquired by neutrons in perfect crystals. We have combined the mature technologies of the Neutron Interferometer and Pendellösung Interferometer and used advanced processing technology to achieve high-precision measurements. This experiment can probe not only the exotic interactions but also the fundamental parameters $\left\langle r_{n}^{2}\right\rangle$ and B of DWF. We plan to update the determination accuracy and constraints of these parameters with:

