

RESONANCES OF EXOTIC THREE-BODY SYSTEMS

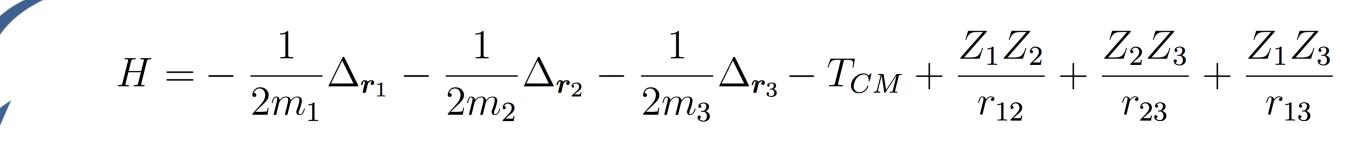
Jean Servais* and Jérémy Dohet-Eraly Physique Quantique and Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université libre de Bruxelles (ULB), B-1050 Brussels, Belgium

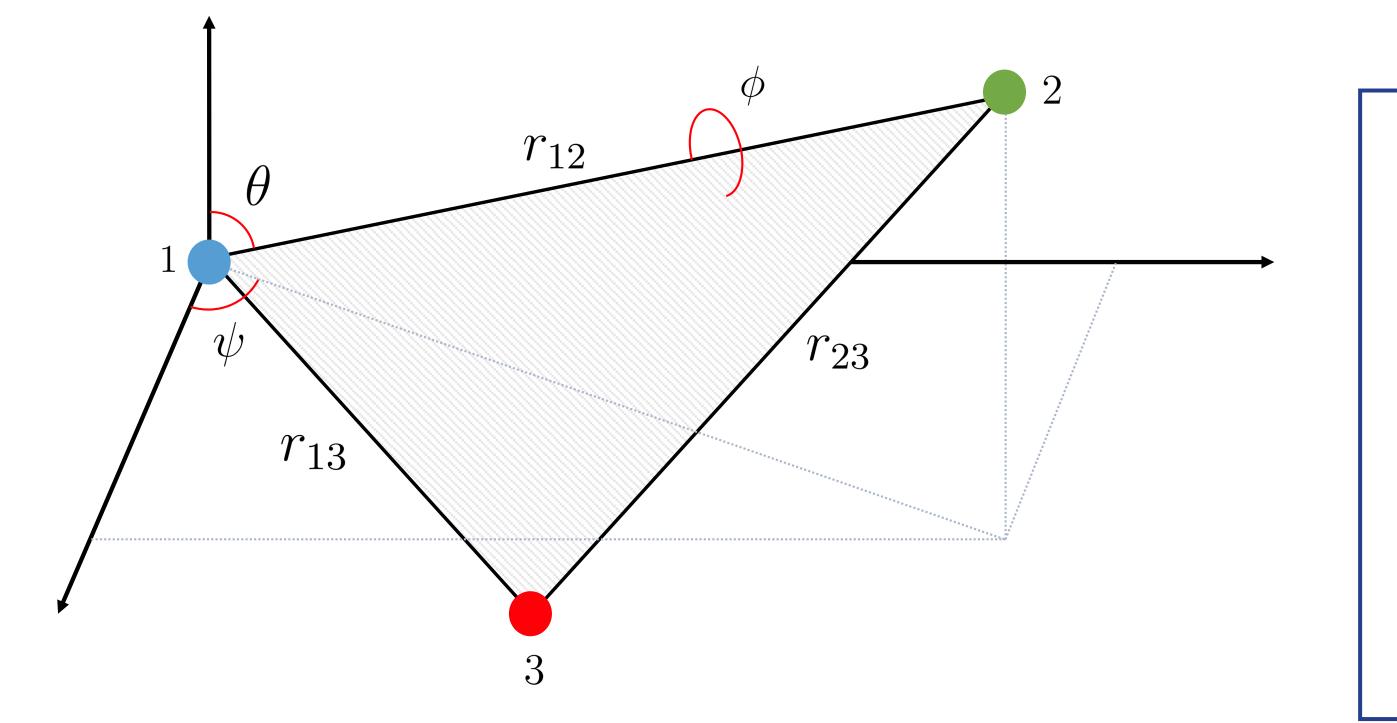
October 2022

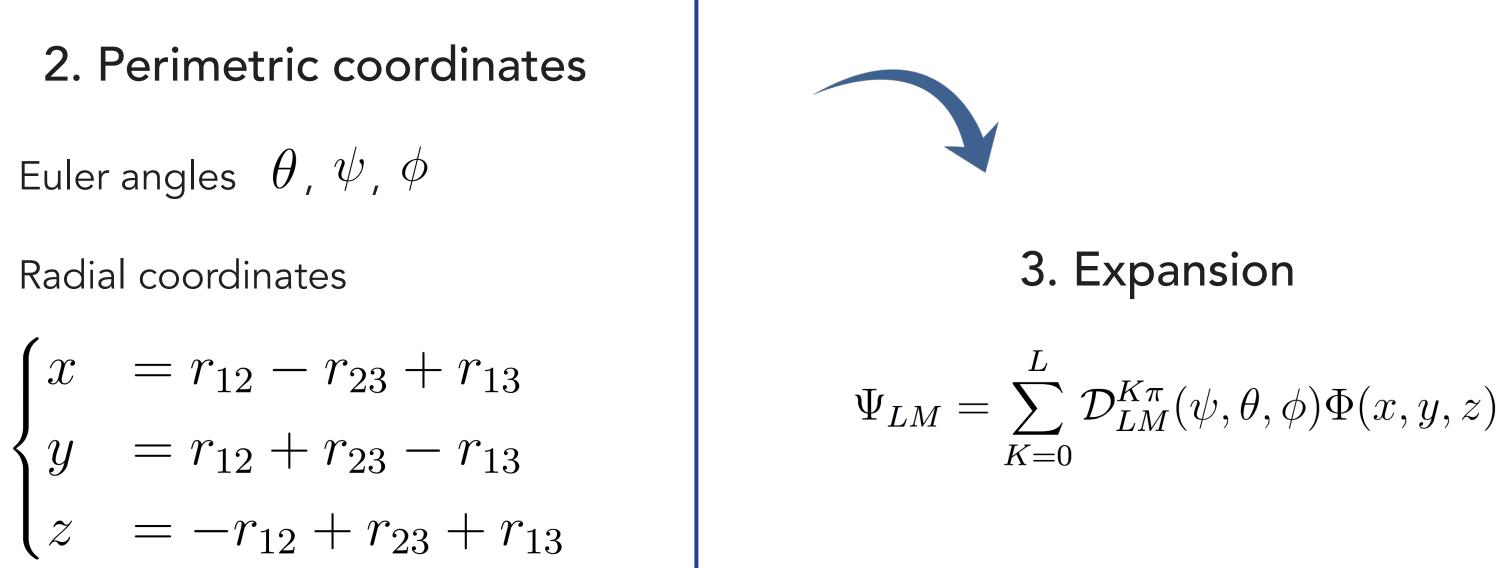
*F.R.S.-FNRS Research fellow (Belgium), jean.servais@ulb.be

- Antimatter facilities at CERN for studying exotic quantum systems
- Efficient tool for determining antimatter properties, e.g.

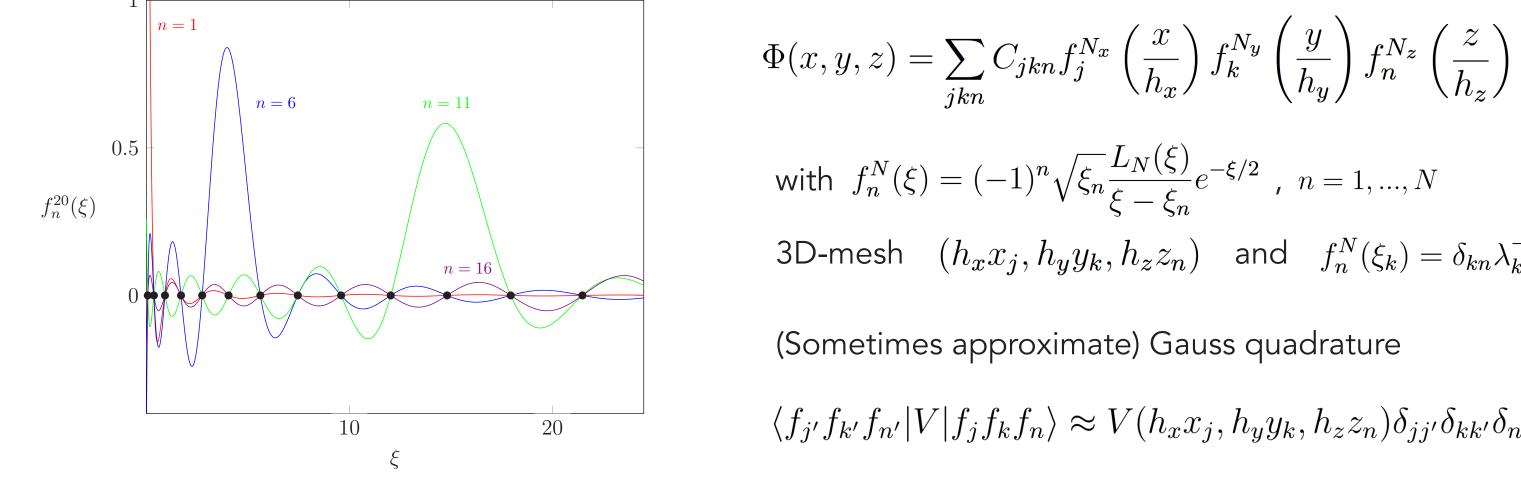
• experimental study of the antiprotonic helium atom (made of an α-particle, an electron, and an antiproton), with high-precision laser spectroscopy on narrow resonances of $\overline{p}He^+ \longrightarrow best$ value for the \overline{p} mass [1], • same techniques for negatively charged pion [2].

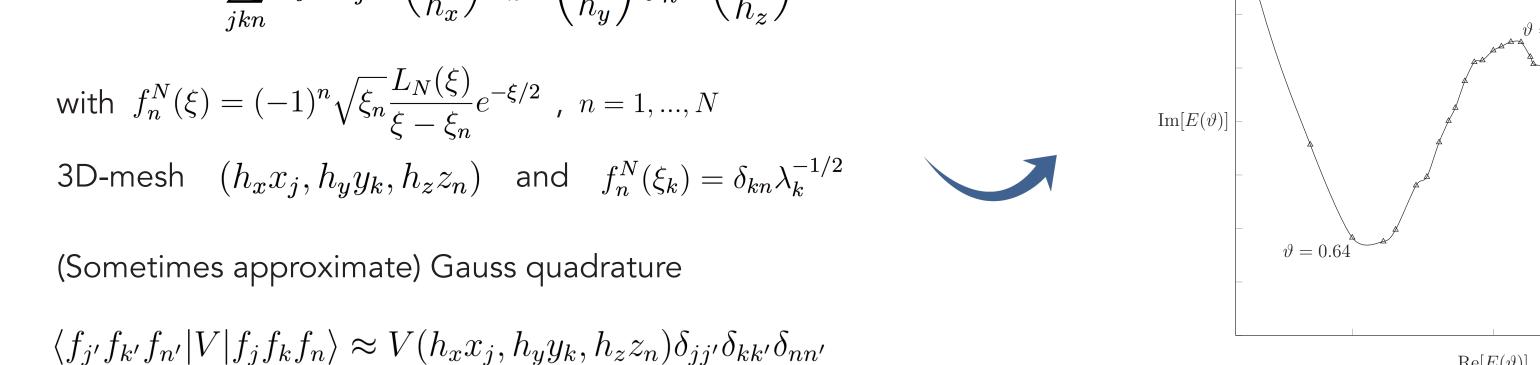

PRESENT WORK

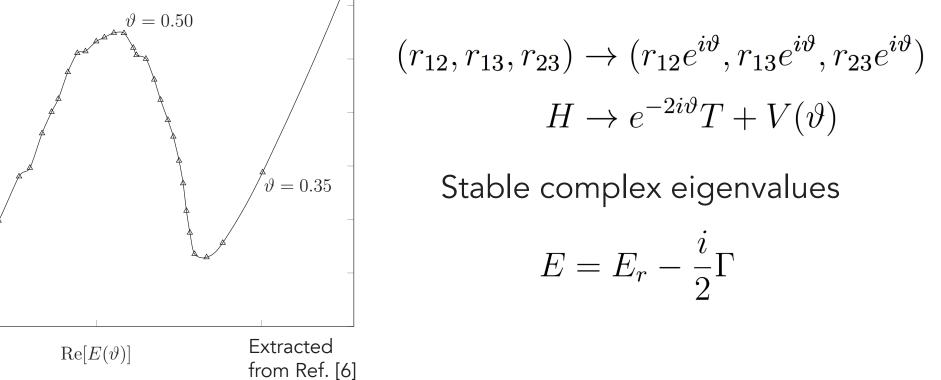

- Aim: computing accurately resonant parameters (energies and widths) of
 - 1. 3-body systems with 2 identical particles (He, H₂⁺, Ps⁻, etc.),
 - 2. 3-body exotic quantum systems ($\overline{p}He^+$, $\overline{p}H$, π^-He^+ , etc.).
- Method: applying the
 - 1. Lagrange-mesh method [3] in perimetric coordinates [4],
 - 2. complex scaling method [5] to extract resonance parameters.



HREE-BODY SYSTEM


1. Internal Hamiltonian of the system




LAGRANGE-MESH METHOD

RESULTS

Helium and $Ps^{-}(L = 0, 1)$

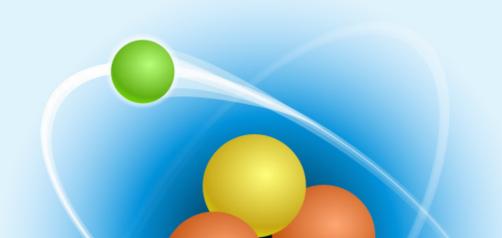
- Absolute accuracy between 10⁻¹¹ and 10⁻¹⁵
- For antisymmetric and symmetric states (${}^{1}S$ and ${}^{3}S$)
- Even and odd, (anti)symmetric states (¹P^{e,o} and ³P^{e,o})

Antiprotonic helium (see Ref. [7])

• Nonrelativistic quasibound / resonant states for L = 0 to 80 • Widths studied for 2 < L < 22

	Energy (a.u.)	Width (a.u.)
∞He ¹S	-7.778 676 355 62 x 10 ⁻¹	4.541 305 705 x 10 ^{-3 [a]}
Ref. [8]	-7.778 676 356 x 10 ⁻¹	4.541 306 x 10 ⁻³
Ps⁻ ³S	-6.353 735 370 385 x 10 ⁻²	3.141 47 x 10 ^{-9 [a]}
Ref. [9]	-6.353 735 371 x 10 ⁻²	3.134 x 10 ⁻⁹
Ps ⁻ ¹ <i>P</i> °	-6.315 586 163 x 10 ⁻²	9.1837 x 10 ⁻⁷
Ref. [10]	-6.315 59 x 10 ⁻²	8.87 x 10 ⁻⁷
Ps ⁻ ³ P ^e	-3.1 630 675 990 1 x 10 ⁻²	1.791 005 980 x 10 ⁻⁴
Ref. [11]	-3.1 628 7 x 10 ⁻²	1.795 x 10 ⁻⁴
p He⁺	Energy (a.u.)	Width (a.u.)
L=3	-1.838 623 03 x 10 ²	2 x 10 ⁻⁶ ^[b]
L=21	-6.595 1	1.1 x 10 ⁻² ^[b]
L=32	-3.353 757 863 53	[b]
Ref. [12]	-3.353 757 80	2.1 x 10 ⁻¹²
[a] See Ref. [6]. [b] See Ref. [7].		

PERSPECTIVES


We plan to develop and extend the current method to study the reso-

nances of

EXOTIC QUANTUM HYBRID SYSTEMS

- Antiprotonic helium atom pHe⁺
- Antiprotonic hydrogen ion pH [13]
- Pionic helium atom π^- He⁺[14]
- Kaonic helium atom

for any angular momentum L,

by means of the Kohn variational method.

References

[1] M. Hori et al., Determination of the Antiproton-to-Electron Mass Ratio by Precision Laser Spectroscopy of pHe⁺, Phys. Rev. Lett. 96, 243401 (2006). [2] M. Hori, A. Sótér, and V. I. Korobov, Proposed method for laser spectroscopy of pionic helium atoms to determine the charged-pion mass, Phys. Rev. A 89, 042515 (2014).

[3] D. Baye and P.-H. Heenen, Generalised meshes for quantum mechanical problems, J. Phys. A 19, 2041 (1986).

[4] C. L. Pekeris, Ground state of two-electron atoms, Phys. Rev. 112, 1649 (1958).

[5] Y. K. Ho, The method of complex coordinate rotation and its applications to atomic collision processes, Phys. Rep. 99, 1 (1983).

[6] J. Dohet-Eraly and J. Servais, Lagrange-mesh calculations of S-wave resonances in three-body atomic systems, submitted to Jour. Phys. B (2022).

[7] D. Baye, J. Dohet-Eraly, and P. Schoofs, Structure changes along the lowest rotational band of the antiprotonic helium atom, Phys. Rev. A 99, 22508 (2019). [8] E.Z. Liverts and N. Barnea, Three-body systems with Coulomb interaction. Bound and quasi-bound S-states. Comput. Phys. Commun. 184, 2596-2603 (2013).

[9] T. Li and R. Shakeshaft, S-wave resonances of the negative positronium ion and stability of a system of two electrons and an arbitrary positive charge, Phys. Rev. A. 71, 052505 (2005).

[10] S. Kar and Y. K. Ho, Doubly excited ^{1,3}P° resonance states of Ps⁻ in weakly coupled plasmas, J. Phys. A 76 (2006).

[11] S. Kar and Y. K. Ho, Doubly excited ^{1,3}P^e resonance states of the positronium negative ion with Coulomb and screened Coulomb potentials. Few-Body Systems 46, 173-181 (2009).

[12] V. I. Korobov and I. Shimamura, Auger transition rates for metastable states of antiprotonic helium He⁺p. Phys. Rev. A 56, 4587 (1997).

[13] D. Baye and J. Dohet-Eraly, Quasibound states of an antiproton and a hydrogen atom, Phys. Rev. A 101, 022507 (2020).

[14] D. Baye and J. Dohet-Eraly, Three-body Coulomb description of pionic helium, Phys. Rev. A 103, 022823 (2021).