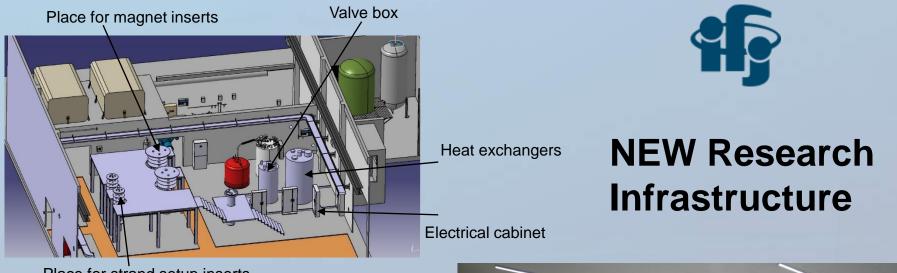
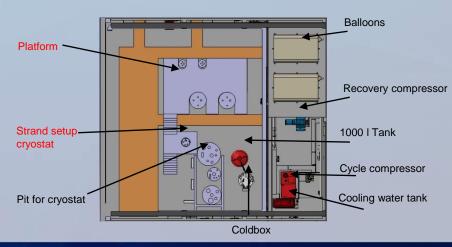


Activities Relevant to FuSuMaTech


Dariusz Bocian

FuSuMaTech Annual Meeting – 14 December 2021 Dariusz Bocian at al., IFJ PAN, Krakow, Poland



- CONSORTIUM IMBUK Cryogenic Materials and Scientific Devices Engineering (2018)
 - DAI Division of Scientific Equipment and Infrastructure Construction at Institute of Nuclear Physics PAN, Cracow, PL
 - ACMiN Academic Centre for Materials and Nanotechnology at AGH University of Science and Technology, Cracow, PL
 - LENT Laboratory of Extremely Low Temperature at Cracow University of Technology, Cracow, PL

Place for strand setup inserts

FuSuMaTech Annual Meeting – 14 December 2021 Dariusz Bocian at al., IFJ PAN, Krakow, Poland

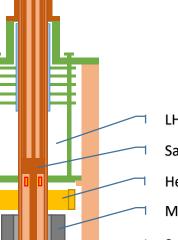
Cryogenic Infrastructure Facts and Numbers

Turbine helium liquefier system:

- Able to liquefy up to 35l/h with LN2 precooling
- Able to liquefy helium without LN₂ precooling (with reduced performance).
- Able to operate with helium contaminated by atmospheric air up to 1%.
- 1000 dm³ storage Dewar

Recovery system:

- Two 15 m³ and one 80 m³ helium balloons,
- 70 m³/h recovery compressor,
- 3 helium high pressure storage groups, containing 108 bottles of 90l volume each operating at 200 bar


Superconductors characterization setup (2022)

The Henryk Niewodniczański Institute of Nuclear Physics

Polish Academy of Sciences

- Nb3Sn
 - 9-15 T, 0-2000 A
 - 1.9 K,
 - 4.22 K and 4.3 K
- NbTi
 - 6-11 T ٠
 - 0-1000 A
 - 1.9 K and 4.22 K
- MgB₂
 - 0-4 T
 - 0-1000 A
 - 4.3 K
 - ReBCO

Specyfication:


- Magnet 16 T at 4.3 K, 70 mm bore with dedicated power supply and quench protection
- 90 mm wide VTI operating at 1.9 K, 4.22 K, 4.3 K, 77 K
- Magnet cryostat operating at 4.3 K
- 1.5-2 kA low voltage power supply
- 11 designed inserts
 - 5 Nb3Sn for continuous tests in series
 - $2 MgB_2$ for continuous test
 - 4 HTS for continuous tests of 2 types
 - 2 NbTi for continuous tests

LHe Vessel
Sample Insert
Heat Exchanger
Magnet
Sample
Vaccuum vessel

ACMIN AGH

ACMIN AGH

Oxford Instruments Triton®

³He/⁴He dilution fridge T = 0.01 - 30 K B < 14 Tesla
electronic transport
magnetoresistance

heat capacity

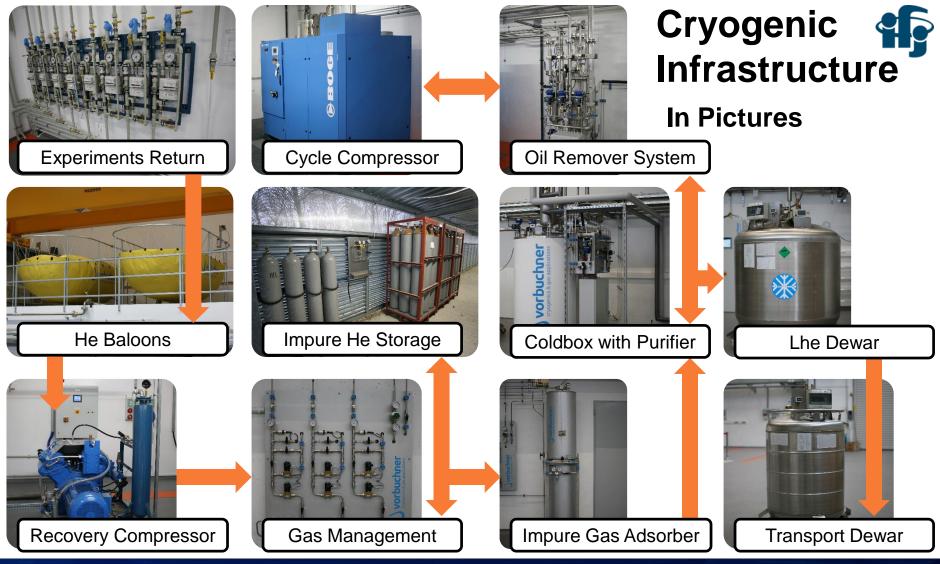
Lakeshore 7407

VSM magnetometer T = 80 - 1300 K

- B < 1.7 Tesla
- DC susceptibility
- \circ magnetization
- o magnetoresistance

FuSuMaTech Annual Meeting – 14 December 2021 Dariusz Bocian at al., IFJ PAN, Krakow, Poland ACMIN

AGH



CONCLUSIONS

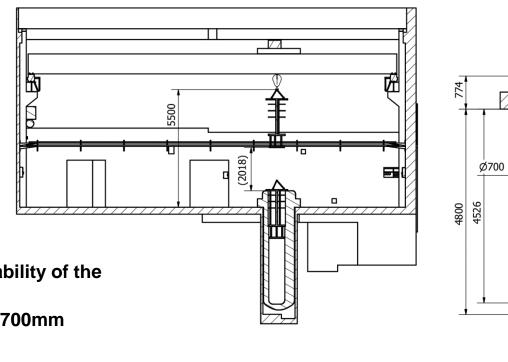
- Polish Road Map for Research Infrastructures
 - Centre of Engineering of Cryogenic Materials and Research Equipment (2020)
 - consortium IMBUK (IFJ PAN, AGH, CUT)
 - consolidation of a unique distributed infrastructure of this kind in PL
 - conductor testing and material studies
- Research Infrastructure development at IFJ PAN
 - New experimental hall
 - 16T test stand for strand characterization
 - Helium liquifier and helium storage and recovery system

FuSuMaTech Annual Meeting – 14 December 2021 Dariusz Bocian at al., IFJ PAN, Krakow, Poland

Actual IFJ PAN testing hall dimensions:

- From ground level to crane hook: 5500mm,
- Depth of a hole: 5000mm,
- Diameter of a hole: 1500mm.

In this configuration, two types of magnets can be tested:


- diameter: max 680mm, length:
 2000mm (larger diameter, magnet below a heat exchanger)
- diameter: max 550mm, length: 2500mm (smaller diameter, magnet next to a heat exchanger)

With some modifications max capability of the cryostat can be extende to:

Wymiary w mm

• diameter: max 900mm, length: 2700mm

IFJ PAN Magnet teststand – Possible Design

Ø750

Ø1450

Ø1005 Ø805

430

2280

3075)