
ML for time resolution of 
MuX HPGe detector 



Techniques for optimizing the timing resolution of HPGe detectors

ELET (Extrapolated Leading-Edge timing) algorithms  are using for improving 
the time resolution of the HPGe detectors;

Cons: 
● Single set of parameters for predefined function for whole energy range
● Manual optimization

Another possible approach: Deep learning



Techniques for optimizing the timing resolution of HPGe detectors

Deep learning 

● learning relationship/correlation between signal shape and time of signal rising (t0)

Pros:
● Automated process
● More generalized approach: the builded network can be used for different different 

detectors with different electrical characteristics (gain, etc.)



The idea

● Autoencoder CNN at first stage:

(based on Alex Skawran (PSI) thesis/draft,
with couple of valuable advices from Dr. Jean-Roch Vilmant, Caltech)



The idea

● Take pre-trained Encoder part...
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● ...and add the NN with dense layers (w/ fully connected neurons):
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Why Encoder + time_det structure?

*Initially: ~198k parameters 
(wrong concept)

+Advantage of CNN: convolution filters => 
highlighting the features

Just Dense layers

CNN Autoencoder + t0 Dense part



Data preprocessing
● Data scaling:

● Possible options

Linear scalers:

➔ StandardScaler: removes the mean and scales to unit variance
➔ MinMaxScaler: scale in the range [0,1]
➔ MaxAbsScaler: values are mapper in the range [0,1]
➔ RobustScaler: removes median and scales to the quantile range

Too large 
spread of 
“features” 

time, counts time, counts
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Issues of the MinMaxScaler

● Potential outliers for different datasets, if the scaler was fitted once:

Original dataset, scaler was fitted once Another dataset, scaler was just applied

time, counts time, counts



● Totally bad performance in second case:

Issues of the MinMaxScaler
● Different signal baselines when scaling separately:

time, counts time, counts

Original dataset, scaler was fitted Another dataset, scaler was fitted separately

*Unlabeled dataset,
see later



Another option: RobustScaler

● RobustScaler: removes median and scales to the 
quantile range (not in the range [0,1])

● Robust to outliers: centering and scaling happen 
independently on each feature

Comparison different scalers



Current results: datasets
● Dataset #10800-11099:

- solid Kr target
- low energy range (0.5 - 1 MeV) was used for training (~724k events) 
- “production” unlabeled subset for checking (~462k events)

● Dataset #10188-10358:

- H target (no muH->muKr transfer)
- low energy range (0.5 - 1 MeV) (~284k events) and
- extended energy range (0.3 - 2.5 MeV) (~801k events) were used

● Dataset #27000-27099:

- Different run
- solid Zn target and different detectors

● NN was trained on this dataset using RobustScaler 

● In all cases of NN fitting (training) datasets were splitted to:

- training and validation subsets (80%)
- test subset (20%)



Current results
● Dataset #10800-11099 (low_en)
● NN was trained
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Metrics:

MAE:  2.354980576445645
MSE:  11.514306991941039
RMSE: 3.393273786764198
R2:   0.863038920402409



Current results
● Then pre-trained NN was applied to “production” datasets

● unlabeled “production” sub-dataset #10800-11099 (low-en) :

● Issue with baseline went away

● See Frederik’s part with 
analysis and comparing with 
ELET algorithm



Current results
● In order to check the NN model generalization, the same pre-trained NN was applied also to 

other datasets 
●  Dataset #10188-10358 (tlow-en), W/O separate fitting the scaller

Metrics:

MAE:   2.5964176759765865
MSE:  12.57420742485626
RMSE:  3.5460128912422553
R2:   0.8545213196793375
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Current results
● Comparing different results (low_en) 

Metrics:

MAE:   2.4518733128336394
MSE:  12.022302841409712
RMSE:  3.4673192586506527
R2:   0.860906640658218

Dataset #10188-10358
w/ separate fitting the scaller
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Metrics:

MAE:  2.354980576445645
MSE:  11.514306991941039
RMSE:  3.393273786764198
R2:   0.863038920402409

Det #10800-11099 
(NN was trained)
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Metrics:

MAE:   2.5964176759765865
MSE:  12.57420742485626
RMSE:  3.5460128912422553
R2:   0.8545213196793375

Dataset #10188-10358
w/o separate fitting the scaller
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~10 ns



Current results
●  Dataset #27000-27099 (low-en) W/O fitting the scaller:

- Data from different run, with different detectors, but the NN still seems to work

Issue with original t0 values (?)



Current results
● Dataset #10188-10358 (ext_en)
● the NN was trained 
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Metrics:

MAE:   1.4607229014786671
MSE:    7.149763225980863
RMSE:   2.6739041168263427
R2:     0.9399099430911559

→ ~5.8 ns



To do list:

● Check other options for scaler

● Analize all results with  double-checking

● Train the NN on different datasets, different energy ranges, and use more 
“production” ones 

● Integration of the NN in terms of code for real experiment pipeline:
- Python-scripts
- reading saved file with trained NN (structure + parameters) with C++ code
- etc.



Backup



Basic NN layers

● CNN: Max/Avg Pooling
● CNN: Convolution layer



Example of Autoencoder CNN

Conv Pool Dense

Dense

Upsamp
Transp_Conv



Det t0 NN (curent)


