
ML for time resolution of
MuX HPGe detector

Techniques for optimizing the timing resolution of HPGe detectors

ELET (Extrapolated Leading-Edge timing) algorithms are using for improving
the time resolution of the HPGe detectors;

Cons:
● Single set of parameters for predefined function for whole energy range
● Manual optimization

Another possible approach: Deep learning

Techniques for optimizing the timing resolution of HPGe detectors

Deep learning

● learning relationship/correlation between signal shape and time of signal rising (t0)

Pros:
● Automated process
● More generalized approach: the builded network can be used for different different

detectors with different electrical characteristics (gain, etc.)

The idea

● Autoencoder CNN at first stage:

(based on Alex Skawran (PSI) thesis/draft,
with couple of valuable advices from Dr. Jean-Roch Vilmant, Caltech)

The idea

● Take pre-trained Encoder part...

The idea

Fe
at

ur
e

ve
ct

or

t0

● ...and add the NN with dense layers (w/ fully connected neurons):

Pre-trained
Encoder

feature vector
(“compressed”
representation)

t0 detecting
ANN

Why Encoder + time_det structure?

*Initially: ~198k parameters
(wrong concept)

+Advantage of CNN: convolution filters =>
highlighting the features

Just Dense layers

CNN Autoencoder + t0 Dense part

Data preprocessing
● Data scaling:

● Possible options

Linear scalers:

➔ StandardScaler: removes the mean and scales to unit variance
➔ MinMaxScaler: scale in the range [0,1]
➔ MaxAbsScaler: values are mapper in the range [0,1]
➔ RobustScaler: removes median and scales to the quantile range

Too large
spread of
“features”

time, counts time, counts

Data preprocessing
● Data scaling:

● Possible options

Linear scalers:

➔ StandardScaler: removes the mean and scales to unit variance
➔ MinMaxScaler: scale in the range [0,1]
➔ MaxAbsScaler: values are mapper in the range [0,1]
➔ RobustScaler: removes median and scales to the quantile range

Too large
spread of
“features”

time, counts time, counts

Issues of the MinMaxScaler

● Potential outliers for different datasets, if the scaler was fitted once:

Original dataset, scaler was fitted once Another dataset, scaler was just applied

time, counts time, counts

● Totally bad performance in second case:

Issues of the MinMaxScaler
● Different signal baselines when scaling separately:

time, counts time, counts

Original dataset, scaler was fitted Another dataset, scaler was fitted separately

*Unlabeled dataset,
see later

Another option: RobustScaler

● RobustScaler: removes median and scales to the
quantile range (not in the range [0,1])

● Robust to outliers: centering and scaling happen
independently on each feature

Comparison different scalers

Current results: datasets
● Dataset #10800-11099:

- solid Kr target
- low energy range (0.5 - 1 MeV) was used for training (~724k events)
- “production” unlabeled subset for checking (~462k events)

● Dataset #10188-10358:

- H target (no muH->muKr transfer)
- low energy range (0.5 - 1 MeV) (~284k events) and
- extended energy range (0.3 - 2.5 MeV) (~801k events) were used

● Dataset #27000-27099:

- Different run
- solid Zn target and different detectors

● NN was trained on this dataset using RobustScaler

● In all cases of NN fitting (training) datasets were splitted to:

- training and validation subsets (80%)
- test subset (20%)

Current results
● Dataset #10800-11099 (low_en)
● NN was trained

t0_pred

t0
_p

re
d

- t
0_

or
ig

in
al

Metrics:

MAE: 2.354980576445645
MSE: 11.514306991941039
RMSE: 3.393273786764198
R2: 0.863038920402409

Current results
● Then pre-trained NN was applied to “production” datasets

● unlabeled “production” sub-dataset #10800-11099 (low-en) :

● Issue with baseline went away

● See Frederik’s part with
analysis and comparing with
ELET algorithm

Current results
● In order to check the NN model generalization, the same pre-trained NN was applied also to

other datasets
● Dataset #10188-10358 (tlow-en), W/O separate fitting the scaller

Metrics:

MAE: 2.5964176759765865
MSE: 12.57420742485626
RMSE: 3.5460128912422553
R2: 0.8545213196793375

t0_pred

t0
_p

re
d

- t
0_

or
ig

in
al

Current results
● Comparing different results (low_en)

Metrics:

MAE: 2.4518733128336394
MSE: 12.022302841409712
RMSE: 3.4673192586506527
R2: 0.860906640658218

Dataset #10188-10358
w/ separate fitting the scaller

t0_pred

t0
_p

re
d

- t
0_

or
ig

in
al

Metrics:

MAE: 2.354980576445645
MSE: 11.514306991941039
RMSE: 3.393273786764198
R2: 0.863038920402409

Det #10800-11099
(NN was trained)

t0_pred

t0
_p

re
d

- t
0_

or
ig

in
al

Metrics:

MAE: 2.5964176759765865
MSE: 12.57420742485626
RMSE: 3.5460128912422553
R2: 0.8545213196793375

Dataset #10188-10358
w/o separate fitting the scaller

t0_pred

t0
_p

re
d

- t
0_

or
ig

in
al

~10 ns

Current results
● Dataset #27000-27099 (low-en) W/O fitting the scaller:

- Data from different run, with different detectors, but the NN still seems to work

Issue with original t0 values (?)

Current results
● Dataset #10188-10358 (ext_en)
● the NN was trained

t0_pred

t0
_p

re
d

- t
0_

or
ig

in
al

Metrics:

MAE: 1.4607229014786671
MSE: 7.149763225980863
RMSE: 2.6739041168263427
R2: 0.9399099430911559

→ ~5.8 ns

To do list:

● Check other options for scaler

● Analize all results with double-checking

● Train the NN on different datasets, different energy ranges, and use more
“production” ones

● Integration of the NN in terms of code for real experiment pipeline:
- Python-scripts
- reading saved file with trained NN (structure + parameters) with C++ code
- etc.

Backup

Basic NN layers

● CNN: Max/Avg Pooling
● CNN: Convolution layer

Example of Autoencoder CNN

Conv Pool Dense

Dense

Upsamp
Transp_Conv

Det t0 NN (curent)

