ML for time resolution of MuX HPGe detector

Techniques for optimizing the timing resolution of HPGe detectors

ELET (Extrapolated Leading-Edge timing) algorithms are using for improving the time resolution of the HPGe detectors;

Cons:

- Single set of parameters for predefined function for whole energy range
- Manual optimization

Another possible approach: Deep learning

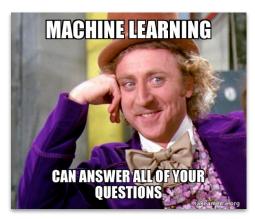
Techniques for optimizing the timing resolution of HPGe detectors

Deep learning

• learning relationship/correlation between signal shape and time of signal rising (t0)

Pros:

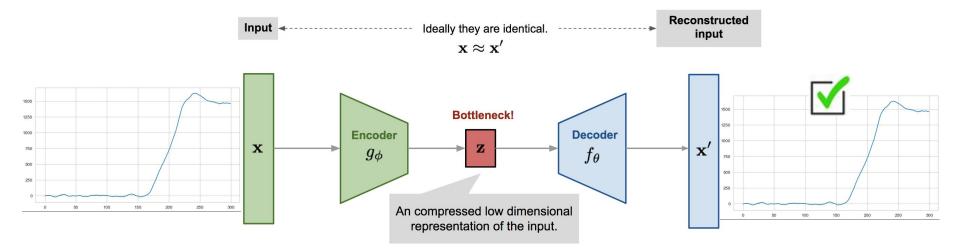
- Automated process
- More generalized approach: the builded network can be used for different different detectors with different electrical characteristics (gain, etc.)



The idea

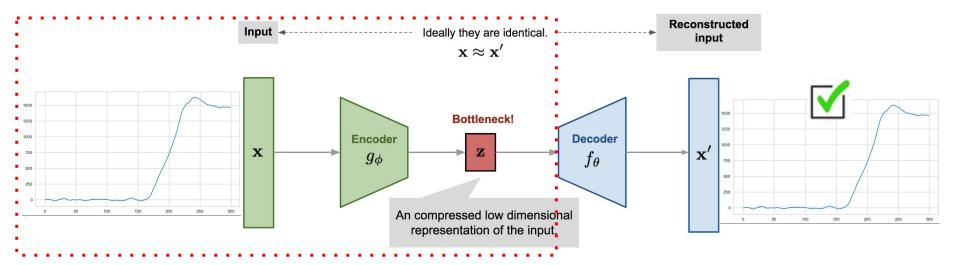
(based on Alex Skawran (PSI) thesis/draft, with couple of valuable advices from Dr. Jean-Roch Vilmant, Caltech)

• Autoencoder CNN at first stage:



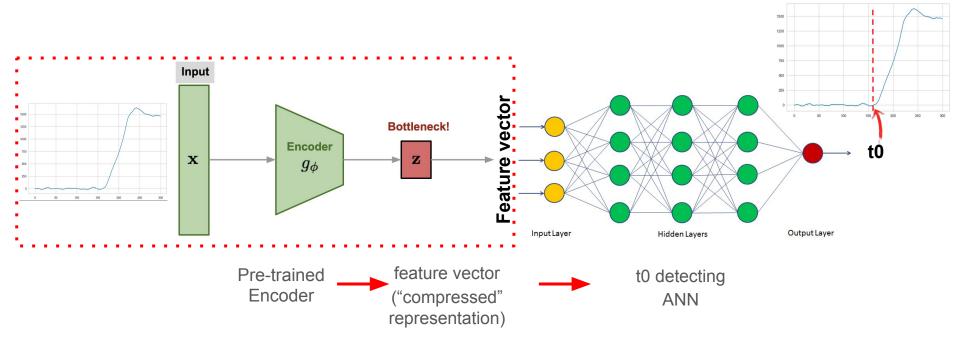
The idea

• Take pre-trained Encoder part...



The idea

• ...and add the NN with dense layers (w/ fully connected neurons):



Why Encoder + time_det structure?

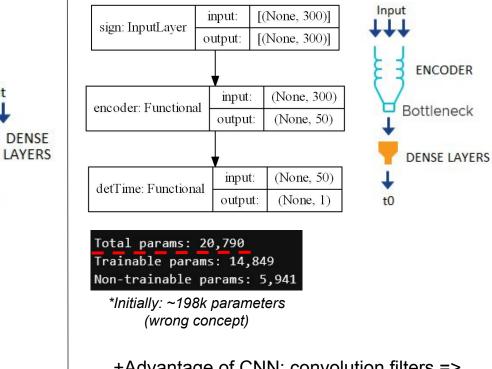
Input

t0

Just Dense layers

Layer (type)	Output Shape	Param #
encoded_sign (InputLayer)	[(None, 300)]	0
dense (Dense)	(None, 128)	38528
dense_1 (Dense)	(None, 64)	8256
dense_2 (Dense)	(None, 1)	65
Total params: 46,849		============
Trainable params: 46,849 Non-trainable params: 0		

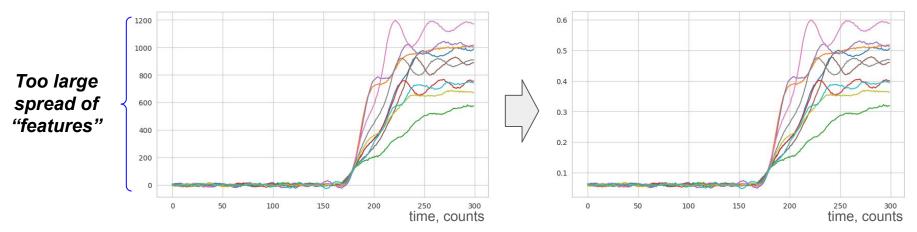
CNN Autoencoder + t0 Dense part



+Advantage of CNN: convolution filters => highlighting the features

Data preprocessing

• Data scaling:



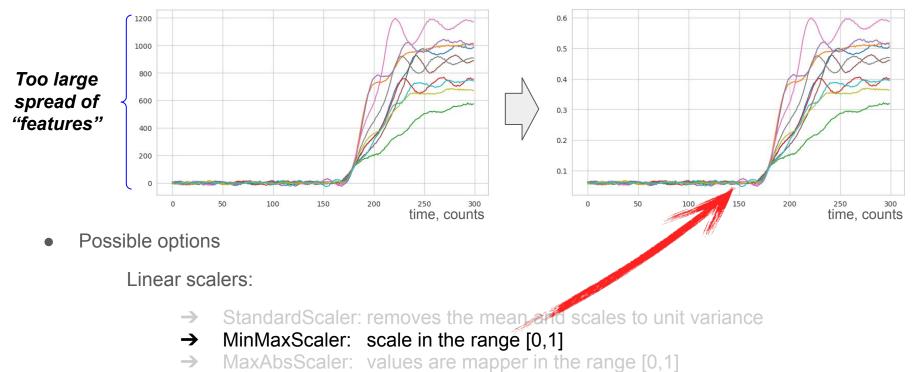
• Possible options

Linear scalers:

- → StandardScaler: removes the mean and scales to unit variance
- \rightarrow MinMaxScaler: scale in the range [0,1]
- → MaxAbsScaler: values are mapper in the range [0,1]
- → RobustScaler: removes median and scales to the quantile range

Data preprocessing

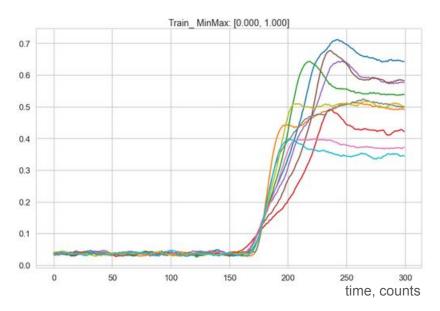
• Data scaling:

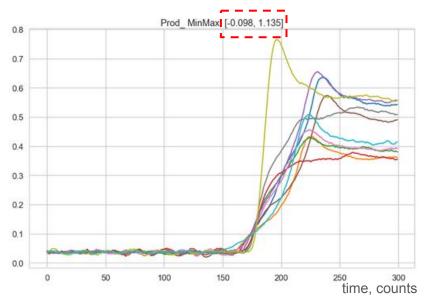


→ RobustScaler: removes median and scales to the quantile range

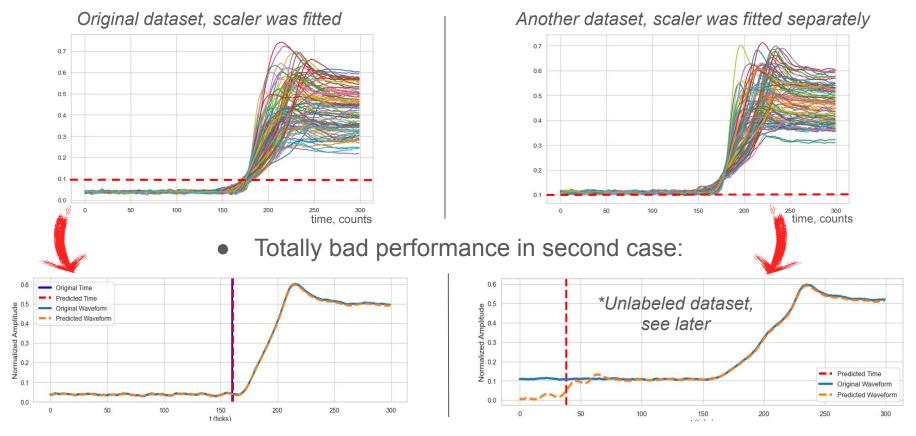
Issues of the MinMaxScaler

• Potential **outliers** for different datasets, if the scaler was fitted once:

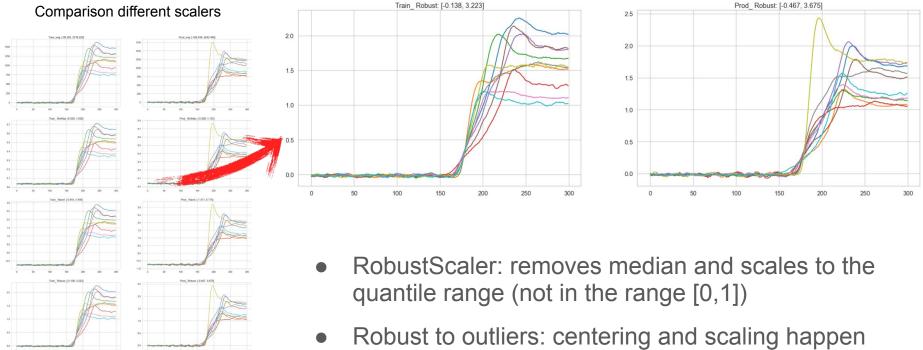




Issues of the MinMaxScaler



Another option: RobustScaler

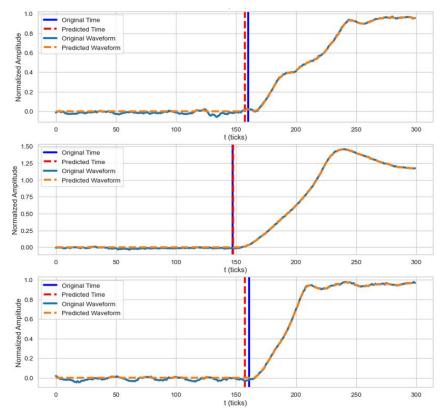


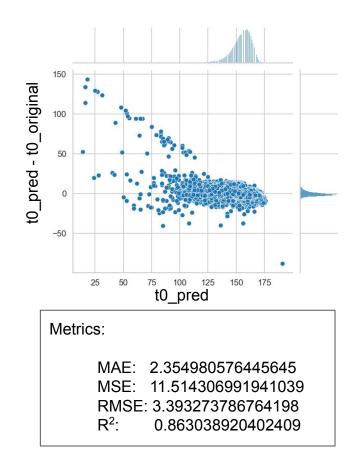
independently on each feature

Current results: datasets

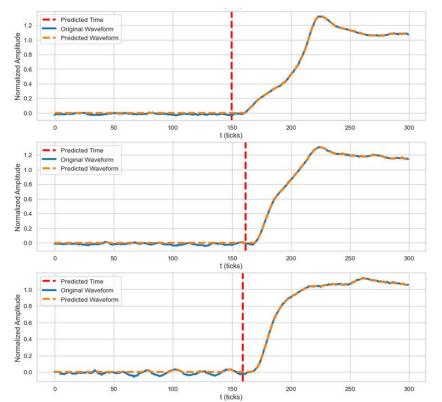
- Dataset <u>#10800-11099</u>:
 - solid Kr target
 - low energy range (0.5 1 MeV) was used for training (~724k events)
 - "production" unlabeled subset for checking (~462k events)
- Dataset <u>#10188-10358</u>:
 - H target (no muH->muKr transfer)
 - low energy range (0.5 1 MeV) (~284k events) and
 - extended energy range (0.3 2.5 MeV) (~801k events) were used
- Dataset <u>#27000-27099</u>:
 - Different run
 - solid Zn target and different detectors
- NN was trained on this dataset using RobustScaler
- In all cases of NN fitting (training) datasets were splitted to:
 - training and validation subsets (80%)
 - test subset (20%)

- Dataset <u>#10800-11099</u> (low_en)
- NN was trained



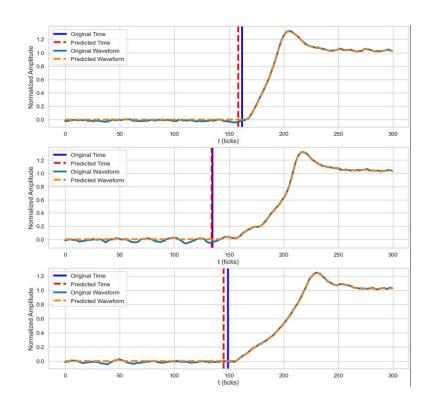


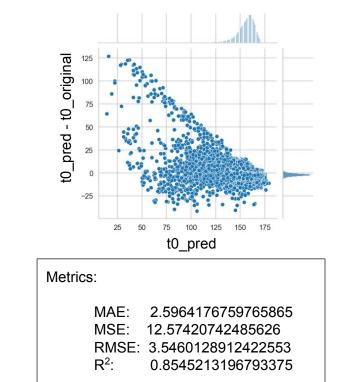
- Then pre-trained NN was applied to "production" datasets
- **unlabeled** "production" sub-dataset <u>#10800-11099</u> (low-en) :



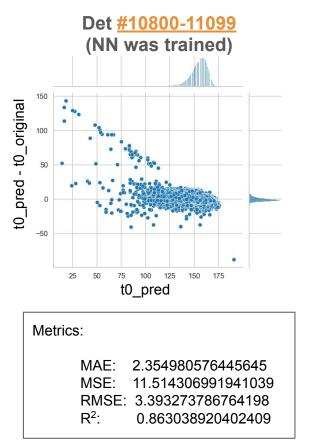
- Issue with baseline went away
- See Frederik's part with analysis and comparing with ELET algorithm

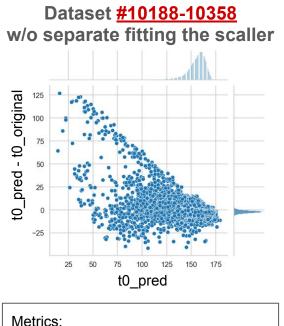
- In order to check the NN model generalization, the same **pre-trained NN** was applied also to other datasets
- Dataset <u>#10188-10358</u> (tlow-en), **W/O separate fitting** the scaller





• Comparing different results (low_en)





2.5964176759765865

0.8545213196793375

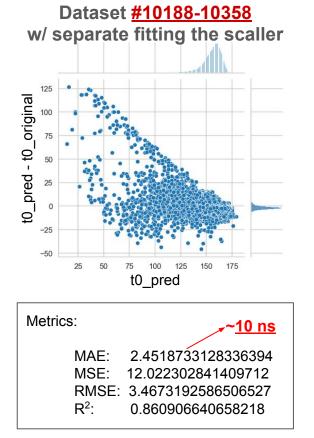
12.57420742485626

RMSE: 3.5460128912422553

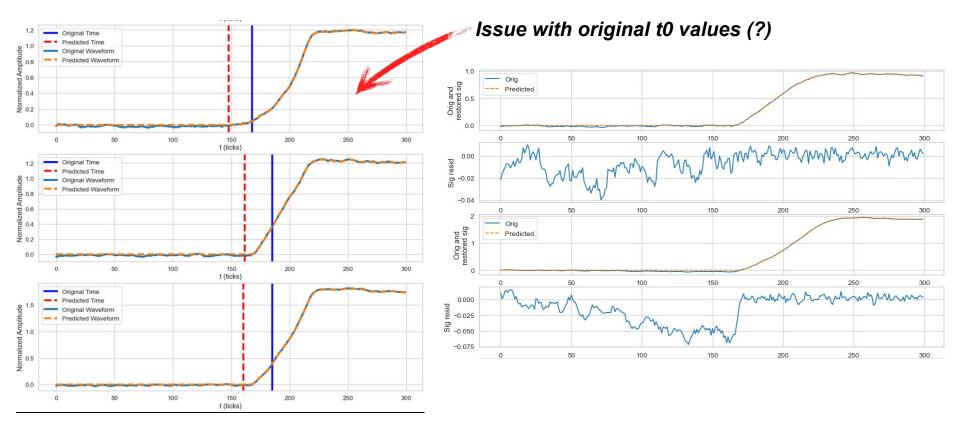
MAE:

 R^2 :

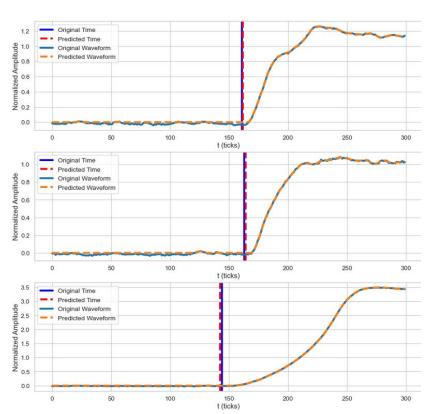
MSE:

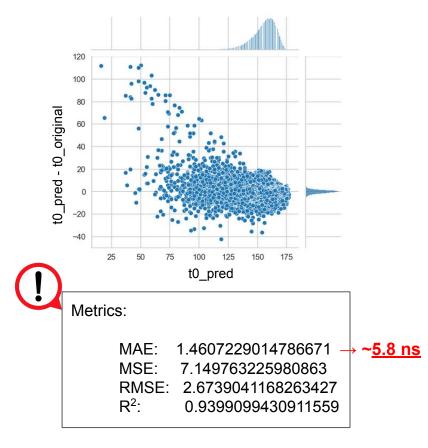


- Dataset <u>#27000-27099</u> (low-en) **W/O fitting the scaller:**
 - Data from different run, with different detectors, but the NN still seems to work



- Dataset <u>#10188-10358</u> (ext_en)
- the NN was trained





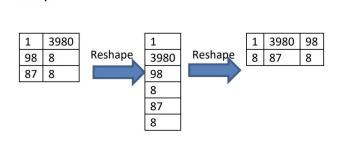
To do list:

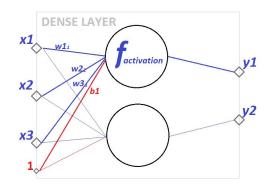
- Check other options for scaler
- Analize all results with double-checking
- Train the NN on different datasets, different energy ranges, and use more "production" ones
- Integration of the NN in terms of code for real experiment pipeline:
 - Python-scripts
 - reading saved file with trained NN (structure + parameters) with C++ code
 - etc.

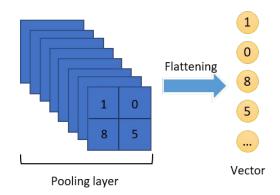
Backup

Basic NN layers

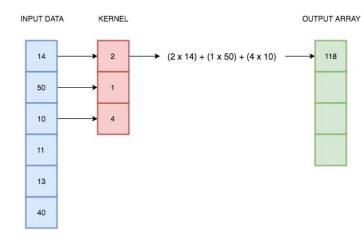
Reshape



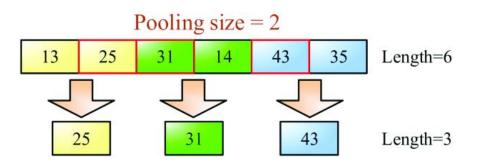




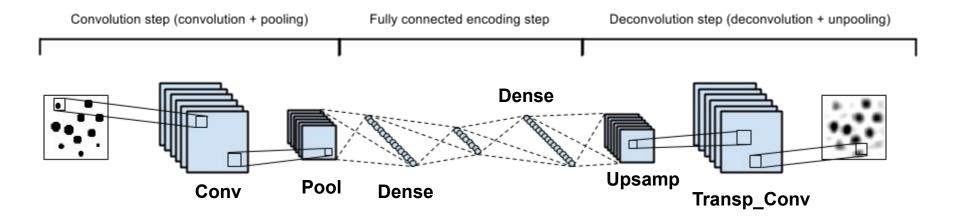
• CNN: Convolution layer



• CNN: Max/Avg Pooling



Example of Autoencoder CNN



Det t0 NN (curent)

