<u>2018</u>

- I miniball cluster
- 8 Orsay pool detectors
- 2 stand alone

Physics: Kr in H_2 2s1s observation

<u>2019</u>

- 8 miniball cluster
- 2 stand alone

Physics: Zn in $\rm H_2\,$ 2s Is observation via $\gamma\gamma$ coincidences X-rays of Radium and Curium

Bread n butter spectrum

Physics case for better (NN?) timing:

- Reconstruct cascade (2S population)
- Tag 2S feeding lines

Production test on Kr data

Production test on Kr data

Ge2 Kr Xray spectrum 500-750 keV Trained on Kr data (500-1000 keV)

Picture book

NN trained over larger energy range (red training, orange production)

How to move forward?

- Only for interesting events (Not implement in first pass over the data, Midas \rightarrow ROOT TTree)
- Good training data sets (close to analysis data). Energy range cuts / slices need not clear yet.
- A training scripts which is easy to use
- Export a NN model (+ scaler ?) so we interface (how?) with the C++ TTree analysis
- Looks pretty good. How much more do we push?