Mupix10 Status and MuPix11 Preparation

Review Meeting date XXX

MuPix Group

MuPix11 Design Review

High Voltage-Monolithic Active Pixel Sensors

High Voltage - Monolithic Active Pixel Sensor (HV-MAPS)

I.Peric, et al., NIM A 582 (2007) 876

transistor logic embedded in N-well ("smart diode array")

charge collection by drift!

active sensor \rightarrow hit finding & digitisation & zero suppression & readout

- low noise $O(75-100e^{-}) \rightarrow low threshold$
- small depletion region of \leq 30 µm \rightarrow thin sensor ~50 µm
- HV-CMOS (60 120 V) process \rightarrow fast charge collection
- industrial standard process \rightarrow low production costs
- continuous and fast readout (serial link) \rightarrow high rate applications

Mupix10 Design & Specifications

Pixel Matrix

Specification from TDR

sensor dimensions $[mm^2]$	$\leq 21 \times 23$
sensor size (active) $[mm^2]$	$\approx 20 \times 20$
thickness [µm]	≤ 50
spatial resolution μm	≤ 30
time resolution [ns]	≤ 20
hit efficiency [%]	≥ 99
#LVDS links (inner layers)	1 (3)
bandwidth per link [Gbit/s]	≥ 1.25
power density of sensors $[mW/cm^2]$	≤ 350
operation temperature range $[^{\circ}C]$	0 to 70

MuPix 10 Improvements wrt. MuPix8

MuPix10 Main Issues

- 1) chip configuration problem \rightarrow solved
- 2) speed of readout & state machine \rightarrow probably solved
- 3) powering issues \rightarrow solved
- 4) low signal \rightarrow solved

Are we confident enough?

Need SNR plots!

Chip Configuration (severe impact!)

Three ways of configuration

- 1) legacy "all external" (slow protocol and many configuration lines)
- 2) standard SPI (4 configuration lines: CSB, MISO, MOSI, SCK)
- 3) Costumised Mu3e protocol (differential: SIN_p, SIN_n) \rightarrow baseline
 - motivated by routing problems on HDI (only one differential pair)
 - first implemented in MuPix9 and successfully tested

ADD SCHEMATICS?!

Issue 1

Problem:

- loading of config registers triggers an auto-reset which is generated too early (probably tsu problem which is not seen in standard simulation)
- All three configuration schemes are affected but SPI configuration scheme is still operational "enough" to configure most functions of the chip.
- a possible issue with timing closure was found in the software library

Implemented fixes:

- implemented configuration registers as simple registers (not triple redundant)
- split *load* and *reset* signal (very simple fix)
- re-synthesize of VERILOG code with new library (\rightarrow see also later)

Readout & State Machine

maximum hit rate ~ 5 MHz / sensor

MuPix11 Design Review

WHAT IS DONE HERE?

Issue 2

Readout & State Machine is supposed to run with a clock frequency of **62.5 MHz** (corresponding to ~30 Mhits per second)

Problem:

- readout errors at 62.5 MHz; but working at ~50 MHz
- for Mu3e only 31.25 MHz would be possible as alternative to 62.5 MHz (baseline)

Fixes

- use new synthesis framework optimised for TSI process, see next slide
- speed up state machine & machine and design (e.g. more power bus drivers, ...)

Note on Synthesis Framework

- All MuPix prototypes up to MuPix9 have been produced at AMS with a dedicated synthesis framework
- **MuPix10** (and MuPix7_B) produced at **TSI** foundry synthesised with the very same "**old**" framework since both processes (AMS & TSI) are very similar
- However, TSI has **7** metal layers (AMS has **6**) and capacities are slightly different (larger), thus slightly changing the properties of the circuits
- Larger (parasitic) **capacities** might cause problems for high **speed** and and other **critical** signals if old software framework is used
- A **new synthesis framework** with updated parameters was successfully created, and validated in the "Run2020" engineering run (16 test chips, other projects)

MuPix10 Powering

×10³ 1.6×10⁶ #entries #entries χ² / ndf 5.794e+04 / 24 χ^2 / ndf 1447/39 45 scale 1.519e+06 ± 3.872e+02 Constant 4.497e+04 ± 5.290e+01 1.4 40 6.449 ± 0.004 mean / ns Mean 40.7 ± 0.0 sigma / ns 15.21 ± 0.00 Sigma 25.53 ± 0.04 1.2 35 30 standard LV settings improved LV settings 25 0.8 (more power) 20 0.6 $\sigma_{_{time}}$ ~25ns 15 0.4 $\sigma_{_{time}}$ ~15ns 10 0.2 5 -100 300 400 TS1 - t_{ref} / ns 0 -100 200 0 100 400 150 200 TS1 - t_{ref} / ns -50 50 100 200 0

Uncorrected time resolution as measured with ⁹⁰Sr (bachelor F. Frauen):

MuPix10 allows to measure back (analog) the voltage inside the chip:

nominal		Number of Connections	With add. Connections	Measured Resistance	Calculated Resistance	Resistance with add. lines	Measured voltage dro	Expected op voltage drop
1.8V	vdd	8	8+8	0.3Ω	0.26Ω	~0.13Ω	50mV	~25mV
0V	gnd	4	4+8	0.4Ω	0.33Ω	~0.11Ω	60mV	~20mV
1.8V	vdda	10	10+16	0.9Ω	0.75Ω	~0.37Ω	160mV	~60mV
0V	gnda	11	11+10	0.6Ω	0.36Ω	~0.19Ω	170mV	~90mV
1.2V	vssa	8	8+6	1.0Ω	0.76Ω	~0.44Ω	130mV	~75mV

Culprit: Pad to Power-Bar Connection

Fix: Increase Connections

(similar for VDDA, VSSA, GND and GNDA)

Issue 3

Time Resolution with Improved Powering Issue 3

(bachelor F. Frauen)

row dependent delay correction

time-walk: ToT versus delay

Time Resolution with Improved Powering

for comparison: ATLASpix3 (comparator in pixel) has a time resolution of about 4ns

The Low Signal Problem I

- Hit efficiency of **50 mu sensor** does not fulfill the specification
- inefficiencies originate from pixel edges and corners
- 100 mu sensor is more efficient due to contribution from diffusion

Results from TCAD simulations for 200 Ohm cm and -30V

Issue 4

The Low Signal Problem II

Signal is much smaller (56%) than expected from Mupix8

Amplifier and comparator basically unchanged from MuPix:

- AC coupling between source follower and comparator was slightly changed (50%)
- Capacity of baseline restoration transistor was changed

(both changes are expected to have minimal effects on performance)

Issue 4

Correct TDAC Settings?

History of Mupix10 optimisation:

- TDAC settings were optimised for time resolution with ⁹⁰Sr source
- then in-chip voltage drops (issue3) were found and fixed
- TDAC re-optimisation done with ⁹⁰Sr yielding improved but still unsatisfactory results
- further investigations brought more findings:
 - > low voltage level of comparator baseline should be avoided
 - employed timing optimisation had a bias (integrated time resolution improves when cutting out small signals)
- settings were optimised again by checking directly the rising edge

New Result from Nov. Testbeam (DESY)

- hit efficiency >99%
- noise from a few hot pixels (untuned) increases at low threshold
- noise rate is small (<< 20 Hz/pixel)

- the signal is substantially larger with the new settings!
- issue is solved and understood!

COULD WE HAVE CONSISTENT PLOTS?

Other Minor Changes for MuPix11

1) Removal of dedicated R&D columns to improve homogeneity of sensor \rightarrow uncritical

- 2) Removal of 1.8 voltage regulators (not needed) \rightarrow uncritical
- 3) Shift HV pad by 50 um to improve handling and operation \rightarrow uncritical
- 4) adjust dynamical range of VPDAQ (pixel tuning) \rightarrow uncritical
- 5) adjust dynamical range of delay circuitry
- 6) implement faster baseline restauration

- \rightarrow uncritical
- \rightarrow uncritical

7)

WHAT ELSE ?

Dedicated R&O columns

add TEXT

MuPix Group

1.8 Voltage Regulators

- For test purposes and for a serial powering study 1.8V regulators were added to MuPix10
- They are not needed for Mu3e phase I and not foreseen in baseline design which is based on external regulators
- > decision to remove!
- > frees some pads which can be better used for GND/powering!

Shift HV pad by 50 um to improve handling and operation

ADD PICTURE FROM HEIKO

Dynamical range of VPDAC (pixel tuning)

The adjustable range is a bit too narrow

HEIKO, ADD COMMENT

Dynamical range of delay circuitry

The delay point is given by: delay = 10 mus / TDAC(4 bit) correct?

The full range (MSB) can essentially not be used

AS: I think the real problem is that the pulses are to long!

Minor 5

Baseline Restoration

0.5 mus

See previous point!

Baseline restoration should be speed up by a factor 2-4

COMMENTS!

ADD SCHEMATICS

Validation of MuPix10 Specifications

	specification	measured
sensor dimensions [mm ²] sensor size (active) [mm ²] thickness [µm] spatial resolution µm time resolution [ns] hit efficiency [%] #LVDS links (inner layers) bandwidth per link [Gbit/s] power density of sensors [mW/cm ²] operation temperature range [°C]	$ \begin{array}{r} \leq 21 \times 23 \\ \approx 20 \times 20 \\ \leq 50 \\ \leq 30 \\ \leq 20 \\ \geq 99 \\ 1 \ (3) \\ \geq 1.25 \\ \leq 350 \\ 0 \ \mathrm{to} \ 70 \end{array} $	OK OK OK OK OK OK OK OK ~ 200, OK plan to operate as cold as possible

List of Implemented Changes (Status)

- A
- B
- C

END

Backup

Depletion and Sensor Thickness

- Sensors thinned to 50 um allow for only 20-25 V depletion
- Data are well compatible with a substrate resistivity of ~370 Ohm cm (nominal 200) assuming that the depletion touches the back-side

MuPix Group

Depletion and Bias Voltage Relation

- 50 um sensor allows only 25-30 mu depletion
- Optimal resistivity is \geq 80 Ohm cm \rightarrow full depletion possible @100V

Mupix10 Optimisations & New Features

Optimisations wrt. Mupix8

- RO architecture \rightarrow only NMOS-Amplifier & source follower)
- power net improved
- bonding pads (SpTAB & wire)
- pixel tuning improved
- improved routing of analog signal lines to periphery
- time stamp $10 \rightarrow 11$ bits (ToT bits $6 \rightarrow 5$)
- substrate resistance \rightarrow 200 Ω cm
- improved two comparator circuit (time-of-arrival & time-over-threshold)
- further improved speed of fast column readout (fast lanes)

New Features

- delay circuit added (for readout)
- voltage regulator for 1.0V (VSSA)
- larger sensor!

2-Comparators

Motivation of 2-comparator design

- use lower threshold for reducing time walk (ToA)
- use higher threshold for hit validation
- use higher threshold for measuring falling edge more precisely \rightarrow better ToT

Two methods to measure ToT:

- → rising and falling edge from high threshold
- rising lower edge and falling higher threshold

MuPix10 Delay Circuit

Issue:

- Hits should be read out after completing of ToT measurement
- ToT measurement depends on pulse height \rightarrow disturbs chronological order of hits
- solution: read hits after adjustable fixed delay

Challenges:

- Andling of overflows (huge pulses) is required (counter stops)
- delay dispersion of pixels should be small

MuPix Group

Mupix10: Pixel Tuning

(a) Untuned pixel threshold distribution.

- 3 bit tune dac (TDAC) per pixel
- tune with charge injection
- significant dispersion reduction measured

(b) Tuned pixel threshold distribution.

Mupix10: New Routing of Analog Signal Lines

MuPix Group

MuPix11 Design Review

VSSA Regulator

Vssa-Regulator

- Integral for module functionality with a single supply voltage
- No detailed study yet
- Dive into the cold water: the regulator works nicely
- Even colder water: MuPix10 was operated successfully with a single supply voltage
- ➔ Power consumption: ~ 220mW/cm²

\rightarrow slide from Heiko; to be redone

37

Beam Test Results and Mupix10 Telescope

- telescope: 3+1 (DUT) layers
- DESY & PSI testbeams (despite Corona)
- MuPix works fine in general!

Mupix10 Efficiency (PSI)

- threshold $42 \text{mV} (\sim 670 \text{ e}^{-})$
- average efficiency ~ 99.85% (noise & rate dependent \rightarrow dead time)
- no pixels masked!
- no TDAC tuning of individual pixels
- O(10) noisy pixel out of 64000 \rightarrow lead to deadtime losses

Cross Talk between Analog RO Lines

MuPix10 routing pattern

Mupix10 integrated cross talk probability less than 1.5 % (Mupix8 ~12%)

Mupix10 Periphery + Pads

Substrate Resistivity Dependence ATLASpix1

significant larger depletion with higher resistivity!

HV-MAPS Prototypes - History

Mupix7 was the first small scale prototype integrating all relevant features of a fully monolithic chip (VCO, PLL, state machine, ...)

MuPix8 & ATLASpix1

Mupix8

- pixel: 80 x 81 μm²
- 200 rows x 48 cols
- amplifier in pixel cell
- discriminators in periphery
- 6 bit ToT
- state machine
- serial link up to 1.6 Gbit/s

<u>ATLASpix</u>

- pixel: 40 x 130 μm²
- 400 rows x 25 cols
- amplifier in pixel cell
- discriminators in active pixel cell
- 6 bit ToT
- state machine
- serial link up to 1.6 Gbit/s

Both discriminator readout architectures are candidate for Mu3e!

TCAD simulations: Doping

HV =20 V

HV =-100 V

80

х

90

60

TCAD simulations: Field

HV =-100 V

red=2·10⁵ V/cm green=1·10⁵ V/cm

2x2 Subpixel Efficiency MuPix7

•20 Ohm cm•64 um thickness

depletion depth \sim 9 um

depletion depth ~ 13 um