

Muonic X-ray spectroscopy on implanted targets

Michael Heines

Table of Contents

- General framework
 - Charge radii from low-Z nuclei
 - Laser spectroscopy
 - King plot method
 - The problem with odd-Z nuclei
- MuX on implanted targets
 - Why do we need implanted targets?
 - Depth profile with SRIM
 - Depth profile with RBS
- Planned measurements
 - Gold targets
 - Potassium targets

General framework

- All low-Z elements from Z = 6 have been measured
- Changing number of neutrons affects charge radius
- Extreme cases
 - Halo nuclei
 - Shape staggering
- Laser spectroscopy

Sanchez, Rodolfo, et al. "Nuclear charge radii of Li 9, 11: The influence of halo neutrons." *Physical review letters* 96.3 (2006): 033002.

- All low-Z elements from Z = 6 have been measured
- Changing number of neutrons affects charge radius
- Extreme cases
 - Halo nuclei
 - Shape staggering
- Laser spectroscopy

- All low-Z elements from Z = 6 have been measured
- Changing number of neutrons affects charge radius
- Extreme cases
 - Halo nuclei
 - Shape staggering
- Laser spectroscopy

Marsh, B. A., et al. "Characterization of the shape-staggering effect in mercury nuclei." *Nature Physics* 14.12 (2018): 1163-1167.

- All low-Z elements from Z = 6 have been measured
- Changing number of neutrons affects charge radius
- Extreme cases
 - Halo nuclei
 - Shape staggering
- Laser spectroscopy

Yang, Xiaofei, Thomas Cocolios, and Sarina Geldhof. *Probing the magicity and shell evolution in the vicinity of N= 50 with high-resolution laser spectroscopy of* ^{81, 82}Zn *isotopes*. No. CERN-INTC-2020-064. 2020.

Laser Spectroscopy

- Isotopic shift
 - Mass shift → effective mass
 - Field shift → charge distribution
- Collinear resonance ionization spectroscopy (CRIS)
 - Produce isotopes
 - Mass separate
 - Trap
 - Doppler tune

Cheal, B., Thomas Elias Cocolios, and S. Fritzsche. "Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations." *Physical Review A* 86.4 (2012): 042501.

King plot method

$$\delta v_i^{A,A'} = M_i \frac{A' - A}{A A'} + F_i \delta \langle r^2 \rangle^{A,A'}$$

$$\Rightarrow \left(\frac{AA'}{A'-A} \delta \nu_i^{A,A'}\right) = M_i + F_i \left(\frac{AA'}{A'-A} \delta \langle r^2 \rangle^{A,A'}\right)$$

$$\Rightarrow \left(\frac{AA'}{A'-A} \delta \nu_j^{A,A'}\right) = \frac{F_j}{F_i} \left(\frac{AA'}{A'-A} \delta \nu_i^{A,A'}\right) + M_j - \frac{F_j}{F_i} M_i$$

Slope and intercept provide information on atomic parameters

Kellerbauer, Alban, et al. "Isotope shift of the electric-dipole transition in Os-." *Physical Review A* 84.6 (2011): 062510.

King plot method

$$\delta v_i^{A,A'} = M_i \frac{A' - A}{A A'} + F_i \delta \langle r^2 \rangle^{A,A'}$$

$$\Rightarrow \left(\frac{AA'}{A'-A} \delta \nu_i^{A,A'}\right) = M_i + F_i \left(\frac{AA'}{A'-A} \delta \langle r^2 \rangle^{A,A'}\right)$$

$$\Rightarrow \left(\frac{AA'}{A'-A} \delta \nu_j^{A,A'}\right) = \frac{F_j}{F_i} \left(\frac{AA'}{A'-A} \delta \nu_i^{A,A'}\right) + M_j - \frac{F_j}{F_i} M_i$$

Slope and intercept provide information on atomic parameters

Mickelson, P. G., et al. "Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p) 3P2–(5s4d) 3D2 transition." *Journal of Physics B: Atomic, Molecular and Optical Physics* 42.23 (2009): 235001.

The problem with odd-Z nuclei

Three stable isotopes

Not for odd-Z nuclei

- Systematic effect dominates the statistical uncertainty
- Half-lives down to 20 years

Koszorús, Á., et al. "Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N= 32." *Nature Physics* 17.4 (2021): 439-443.

MuX on implanted targets

Why do we need implanted targets?

- Mass separation
 - Elemental purity
 - Isotopic purity
- Protecting the sample
 - Physical
 - Chemical
 - Thermodynamic
 - Sputtering
- Glassy carbon

Depth profile with SRIM

Simulate depth profile using SRIM software

- No guarantee for accuracy
- Experiments vs Simulation
 - Sigradur G → Straggling underesitmated
 - Sigradur K → Better?

Adeojo, S. A., et al. "Effect of sequential isochronal annealing on the structure and migration behaviour of selenium-ion implanted in glassy carbon." *Vacuum* 182 (2020): 109689.

Depth profile with RBS

- Rutherford backscattering spectrometry (RBS)
 - Composition
 - Density
- Using software → Complete depth profile

Planned measurements

Gold targets

- Different depths of ¹⁹⁷Au
- Earlier tests: 30% of muons passes through 100 nm graphite layer
- Implantation
 - IMBL KU Leuven
 - RADIATE
- Aim for 50-100 µg implanted
- Self sputtering

	(nm)	energy (keV)	straggling (nm)
_	5	0.9	0.9
_	10	4.5	1.8
	25	27	3.9
	50	90	6.9
	100	250	12.1

Approximate

Desired depth

Approximate

Potassium targets

- Different depths of ³⁹K
- Less sputtering expected
- More reactive than ¹⁹⁷Au
- If possible
 - ⁴⁰K → Unlikely in 2022
 - 41K

Desired depth (nm)	Approximate energy (keV)	Approximate straggling (nm)
5	1.6	1.7
10	5	3.1
25	17	6.8
50	40	12.3
100	80	20.5

Questions

