Session 3

Dedicated Ocular Beamline & Universal Beamlines Adapted for Ocular Therapy

KACPEREK, Andrzej

Delivery of optimal ocular proton beams in the next decade?

Early development of ocular PBT beams

Understanding the configurations PBT centres

Dedicated low-energy beams	Low-energy cyclotrons, eye room	CCC, Nice, UCSF, HZB
Dedicated room, shared machine	High-energy centre with eye room	PSI, Delft, IFJ
Shared treatment room, shared machine	Multi-purpose room in large centre	MGH, Curie, UFHPTI, WPE
Shared room, shared beam (adapted)	Eye treatments on gantry or fixed line	Seattle, NWPC, CNAO

At year	Number Ocular Facilities Operating	Particle beams	Low-energy Beams (p, He)	High- energy* shared beams***	Adapted gantry beam nozzle**
1990	10	р <i>,</i> Не	5	5	0
2000	11	р	5	6	0
2010	14	р, С	6	8	1
2021	20	р <i>,</i> С	5	15	3

* Degraded beams: in dedicated or shared treatment rooms

** On rotating gantry, supine/inclined couch

*** PBS or passive-scattered beams

Ocular Treatment Beam Configurations in 2022

Fun fact: >43,300 eye patients treated with PBT by 2021

Range Straggling & Energy Degradation

Energy Selection System (ESS) consists of :-

Energy degrader (wedges, graphite, Be)

- Magnetic analyser (to select E)
- Momentum slits (to reduce ΔE)

initial energy	90-10%	
MeV	distal fall-off	
60	1.0 mm	
120	3.2 mm	
160	5.2 mm	
220	8.6 mm	

- Energy spread $\Delta E \sim straggling$
- Beam efficiency <1%

Range Straggling ∝ Initial Energy e.g. approx. 1% of Range (water)

Effects of Penumbrae and Fall-off

- 1) Kacperek A, 2012 Springer);149-177, in Ion Beam Therapy (ed. Linz U)
- 2) Fleury E et al. (2021). Medical Physics 48(1)
- 3) Gérard A. et al. (CAL, Nice) 2018, PTCOG 57, Cincinnati.

Beam characteristics of low-energy accelerators: a 'gold' standard for single-anterior fields

Parameter	Specifications	Effects
Beam penumbrae	1.1-1.5 mm (@80-20%)	OAR shielding
Beam distal 'fall-off'	0.9-1.5 mm (@90-10%)	OAR shielding
Dose uniformity	± 2% @ 90%	Avoid cold spots, skew
Beam dose-rate/ duration	0.5 to 1.5 min.	Patient comfort/safety
Resolution in depth, modulation	0.2, 1 mm	Dose sparing
maximum/min. range and SOBP	4 – 35 mm	Deep and superficial mm
Sufficient SAD	180 to >250 cm	Parallel beam
Isocentre	7 cm	

These factors are inter-dependent

First Symposium of Ocular Proton Therapy 2022

'old time' modulators

Alternatives to lowenergy circular accelerators

First Symposium of Ocular Proton Therapy 2022

Potential for Ocular Treatment 70 N with

[AVO-LIGHT project]

- Modular design which offer possibility to have different energies outputs. Another possible configuration could be a full energy 230MeV with an output line at 70MeV or a cyclinac [5].
- > Low radiation: 1m standard concrete wall thickness on average along the linac.
- Expected electronic energy modulation in the range 40 to 70 MeV by controlling amplitude and phase of each accelerating module.
- > Expected volumetric rescanning with fast 5 millisecond energy
 - changes, maximizing the advantage of proton treatment.

But...

70 MeV proton linac with in-room CT and robotic couch (2022)

With thanks: G. De Michele

Directions in eye PBT

Questions and Concerns	Details and Comments
WHY THE SHARPEST PROTON ISODOSES?	Best at <70 MeV energies; brass collimators, best margins for OAR and planning flexibility; best conformity with passive-scattered beams; 70 MeV synchrotron beams;
NO VENDORS FOR LOW-ENERGY ACCELERATORS	Costs, size, compactness (S/C); novel developments unlikely in next decade; ageing heritage cyclotrons;
PRECISION CHAIRS vs. SUPINE COUCH	Limited experience with couch/supine treatments; advantages in anterior-lateral-oblique fields to be proven;
ADAPTED BEAMLINES (GANTRIES/FIXED LINES)	Degraded beams adequate if sufficiently developed;
INCREASE IN ADAPTED/DEGRADED BEAM LINES	Cost-effective for ocular add-on; role of pencil beams; aperture-less beams? Role for micro-MLC? Move away from modulator libraries?
EYE PATIENT WORK FLOW	Patient flow priorities; simulations in 'shared' room;

Adequate beams or optimally conformal ocular beams? Would 'adequate' penumbrae be acceptable in conventional X-radiotherapy?