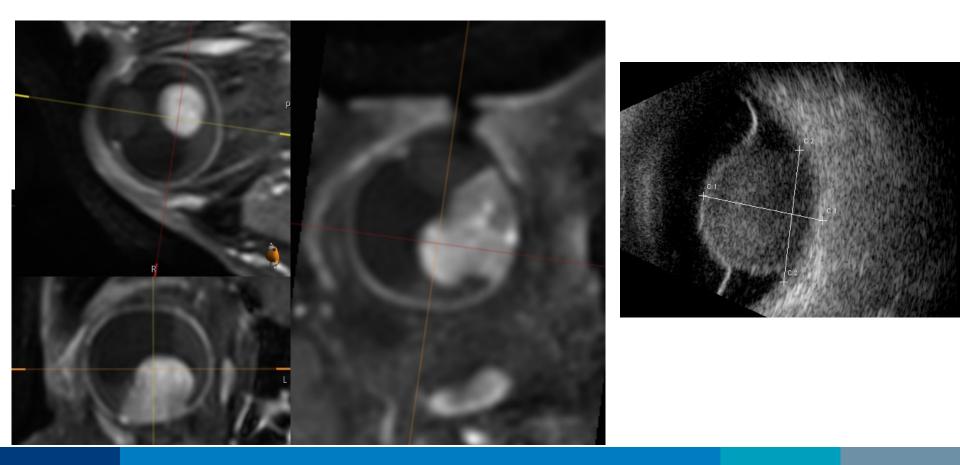
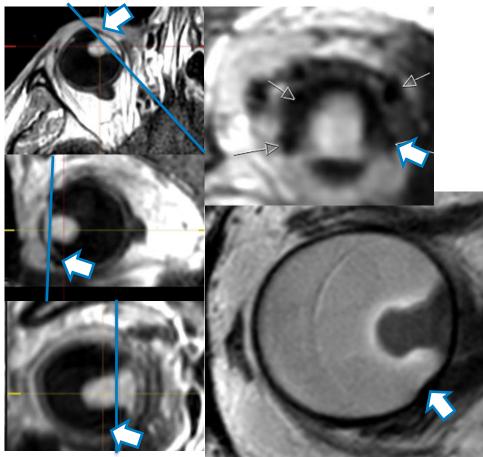
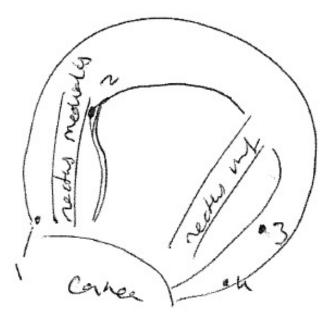

MR imaging for ocular proton therapy

Jan-Willem M. Beenakker


Depts. Ophthalmology, Radiology, Radiation oncology

Disclosure: research support from Philips Healthcare


Why MRI?


- 3D visualization
 - More accurate (3D) description of tumour geometry

Why MRI?

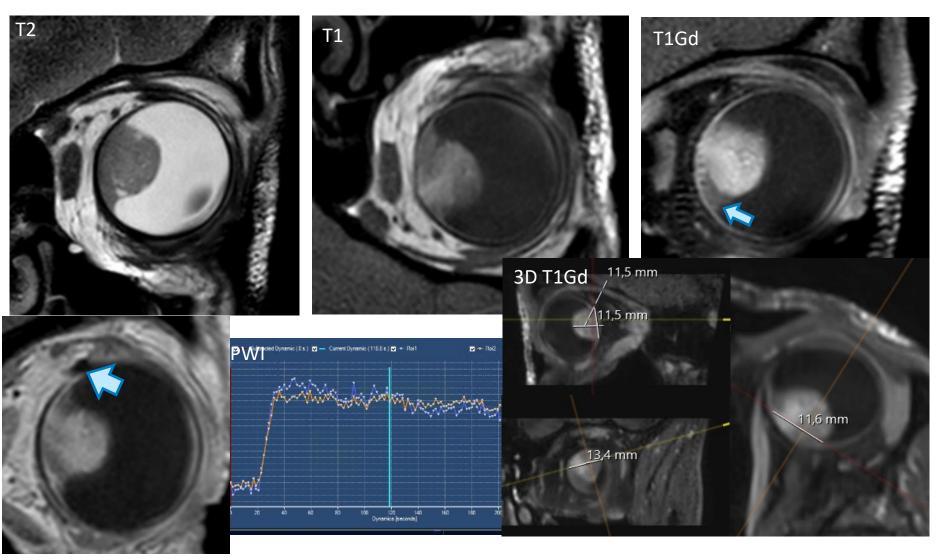
- 3D visualization
 - More accurate (3D) description of tumour geometry
 - And relation to clips

Why MRI?

- 3D visualization
 - More accurate (3D) description of tumour geometry
 - And relation to clips
- Some ophthalmic measurements are less accurate in UM patients
 - E.g. tumor affects eye-length measurement in 68% of patients ¹
- (Functional scans)²
- Our patients receive 3 MRI's
 - Diagnostic MRI (Pre clip surgery)
 - -> Tumour geometry & involvement of nearby structures (& diagnosis)
 - Change in optimal therapy (brachy/protons/enucleation)
 - MRI for clip-tumour relations (short protocol)
 - 3mnts post PBT: follow-up

How?

- Hardware, protocols, etc. available from major MR-manufacturers
- Hardware: 3Tesla & surface coil

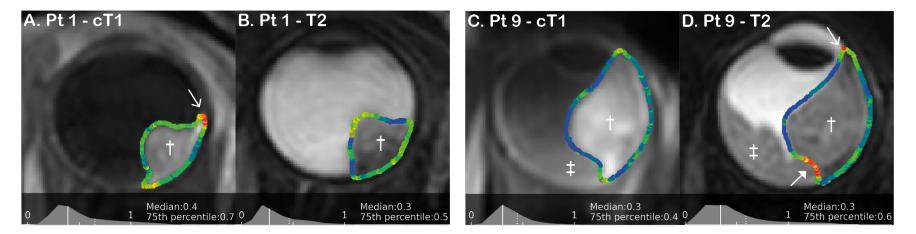

Ferreira, MRI of Uveal Melanoma, Cancers (2019)

How?

- Hardware: 3Tesla & surface coil
- Protocol:
 - 3D isotropic (<0.7mm acquisition resolution)
 - allow for reformatting in all directions
 - measure dimensions, distances
 - 2D multi-slice (<0.5mm in plane resolution)
 - Detailed evaluation (optic nerve invasion, origin of lesion,...)
 - Clip-tumour relation
 - Functional imaging (DWI, DCE)
 - Diagnosis, follow-up
- Contrast agent is strongly advised to differentiate between UM and RD
- Enhanced gradient strength (and localized shimming) for clips
- Experienced radiologist

Ferreira, MRI of Uveal Melanoma, Cancers (2019) Jaarsma, Comparison of MRI-based and conventional measurements for proton beam therapy of uveal melanoma, submitted

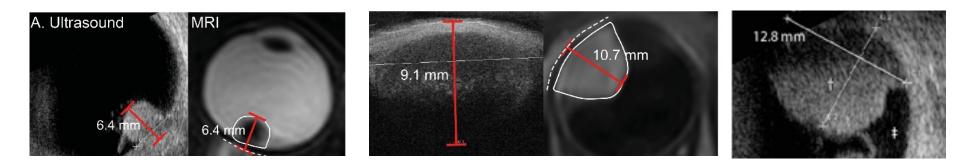
Example patient


Ferreira, MR imaging characteristics of uveal melanoma with histopathological validation, Neuroradiology (2022)

Interobserver variation

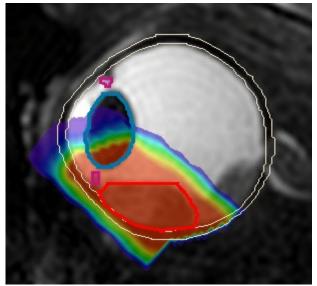
- 10 patients, 6 observers (Radiologists, Ophthalmologists, Radiation oncologists)
- Median localSD: 0.4mm
 - 1/2 acquisition voxel
- T2 smaller than T1gd
- Contrast enhanced T1 advised

Local SD	cT1	T2	
	Median; 75 th perc	Median; 75 th perc	p-value (n)
Vitreous	0.39 mm; 0.49 mm	0.24 mm; 0.34 mm	<0.001* (10)
Sclera	0.37 mm; 0.51 mm	0.39 mm; 0.51 mm	0.99 (10)
Edge	0.62 mm; 0.90 mm	0.52 mm; 0.71 mm	0.08 (10)
RD	0.54 mm; 0.85 mm	0.47 mm; 0.79 mm	0.35 (5)
GTV	0.41 mm; 0.60 mm	0.35 mm; 0.54 mm	0.12 (10)


perc = percentage, * significant difference

Jaarsma, Inter-Observer variability in MR-based target volume delineation of uveal melanoma, submitted

MR-based tumour dimensions


- Manual MRI (T1gd) & ultrasound measurements generally match^{1,2}
 - IQR prominence -0.2 0.6mm; largest diameter -1.4 1.5mm (n=72)³
- Except for anterior tumors^{2,3}:
 - Full tumour extend often not visible on ultrasound
 - Correct positioning of transducer not always possible

1.Ferreira, MR imaging characteristics of uveal melanoma with histopathological validation, Neuroradiology (2022)
2.Jaarsma, Comparison of MRI-based and conventional measurements for proton beam therapy of uveal melanoma, submitted
3. Jaarsma, Magnetic resonance imaging in the clinical care for uveal melanoma patients, in preparation

Main points

- High resolution ocular MRI is feasible in regular clinical practise
- Main benefits:
 - 3D visualisation of tumor, clips and eye
 - More accurate tumour dimensions for anterior tumors
 - More accurate eye length determination for posterior tumors
 - Detailed radiological evaluation (invasion, functional parameters, ...)
 - Follow-up
- 3D MR-based PT planning

Acknowledgements

Gorter Center

M. Jaarsma

M. Tang

L. van Vught

L. Klaassen

Radiotherapy

C. Rasch

M. Ketelaars

Ophthalmology G. Luyten

M. Marinkovic

K. Vu

Radiology

T. Ferreira

B. Verbist

G. van Haren

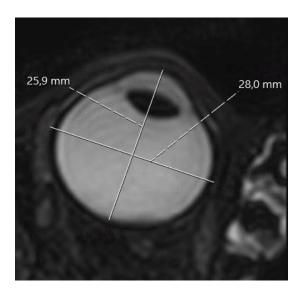
HollandPTC M. Rodrigues Y. Klaver M. Hoogeman

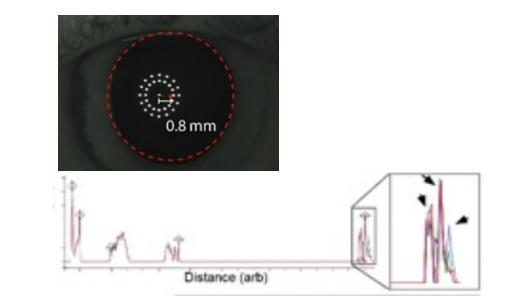
E. Fleury (ErasmusMC)

P. Trnkova

K. Spruijt

Philips M. Versluis P. de Bruin


Manchester University M. van Herk



j.w.m.beenakker@lumc.nl

Eye dimensions

- MRI and biometry match in healthy population (SD <0.3mm)^{1,2}
- 15/22 UM patients: signs of unreliable biometry :
 - -> average 0.8mm shorter eye
 - Multiple reflections in raw biometry signal
 - Large iris decentration
- MRI prefered over biometry of contralateral eye

1. Beenakker, Automated Retinal Topographic Maps Measured With Magnetic Resonance Imaging, IOVS 2015 2.Jaarsma, Comparison of MRI-based and conventional measurements for proton beam therapy of uveal melanoma, submitted