

Experience with the RayOcular TPS

from initial requirements to treated patients at WPE

Jörg Wulff & Benjamin Koska

Cling together, swing together – WPE and RSL

• RaySearch/ WPE contract from 2009: "The TPS must include the ability to plan eye treatments ..."

- What do we need? What do we want?
 - Ask someone who knows! <u>J. Heufelder</u> & J. Verwey (ex PSI)
 - survey on desired features to all proton centers treating ocular patients 2018
 - wishlist influenced by EYEPLAN & OCTOPUS
- workshops with RSL in Essen/ Stockholm 2018
- bi-weekly meetings with RSL (<u>M. Janson</u>/ E. Vidholm + J. Heufelder)
- testing of evaluation versions
- first ocular patient treated in Nov. 2021 completely based on RayOcular

survey results 2018

RayOcular (10B) – same same, but different

- RayOcular as integral part of RayStation
 - contouring, image registration etc.
- specifics to OPT
 - hierarchic eye-model + clips
 - metrics (e.g. clip-to-clip distances)
 - fundus overlay
 - X-ray image matching

new things to EYEPLAN users

- CT based model creation
- density overrides
- robustness analysis
- scripting
- PBA dose calculation

Dose calculation in RayOcular

- established pencil-beam algorithm of RayStation
- beam modelling/ fluence calculation
 - initial energy spectrum for each SOBP, discretized into "layers"
 - angular variance & mean direction from virtual point source
 - → (flat) fluence grid behind the aperture opening
 - explicit modelling of scatter & energy loss in wedges
- dose calculation
 - MC pre-calculated monoenergetic IDDs
 - calculation of energy loss in material traversed (not just water!)
 - MCS + nuclear scattering
 - final dose calculation in a user-chosen dose grid down to 0.2 mm (2-5 seconds)
 - no MU calculation

Commissioning & Validation Methods

- beam-model creation and validation
 - water-tank scans for each available SOBP (depth dose + lateral)
 - conversion into RSL data format → beam-model
 - validation by comparison of profiles via 1D gamma-test
- geometry validation
 - clip projections/ orientation in X-ray overlay
 - phantoms with tantalum clips/ fiducials
 - indexing for different gaze angles
 - fundus overlay validation
 - 3D printed with "landmarks"
 - filled with water + lens (matching refraction of human)
 - single wide-field fundus image (Zeiss Clarus 500)

Geometry validation

- clip projection for various orientations
 - well within few tenth of a mm
 - rotations correctly represented

- funduscopy
 - working in camera and polar mode
 - whole chain with uncertainty of 0.5-1 mm (after proper scaling/ registration)

Universitätsmedizin Essen

Dosimetric validation

- all profiles with Γ (2%/0.3 mm) 95-100%
- lateral/ distal profiles penumbra agree well within 0.3 mm
- range change per option as a simple shift of depth profile
- shallow (in-air) lateral profiles in IBA system not flat → not modelled in RayOcular

dosimetric test – wedges!

- Γ (3%/0.3 mm) 90-100%
- lateral penumbra agrees within ~0.4 mm
- scatter "excess dose" reproduced
- clinically not released yet

General planning experience

adaptability of plans

- plans can be copied, edited & summed
- ad-hoc during simulation when loading X-ray images
- plans can be compared with one another

time to plan

- model creation, matching to CT, fine-tuning, evaluation: 60 min
- (optional) registration to MRT: 20 min
- registration fundus, contouring: 30 min (more complicated: iris melanoma)
- defining gaze angle/ adjustment & dose-calculation: 30 min
- adjustment of plans during/ after simulation: 30 min
 [note: no practical experience with EYEPLAN/ OCTOPUS]
- structures out of the eye model (+ iris)
 - many possibilities with RayStations standard contouring tool-box...

Summary & Outlook

- RayOcular combines all features of a modern TPS for ocular treatments
 - high confidence in the accuracy of dose-calculation
 - maintained system with (expected) constant evolution
 - high usability (list of enhancement requests to RaySearch ...)
- by now used at WPE for >15 patients (including iris-melanoma)

THANK YOU