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BioMedIT Network

The BioMedIT Network builds on three legally independent 
scientific IT competence platforms: 

● sciCORE, operated by the University of Basel
● Romandie node operated by UNIL (previously SIB)
● SIS, operated by ETH Zurich

The BioMedIT network is coordinated by Data Coordination 
Centre (DCC), hosted at SIB.
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OpenStack project architecture at sciCORE BioMedIT node
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sciCORE BioMedIT project space features

sciCORE
Center for Scientific Computing

5

  



Challenges and requirements

Infrastructure challenges

● How to automate deployment, use resources efficiently, when to use external consultant?

Projects challenges

● How to automate project onboarding and deployment process?

● How to keep track on changes made on OpenStack?

● Where to put the focus on system administration?

● How to maximise usable resources (sysadmin time, services on top, using external contracts, etc.)
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Configuration management overview

● The main tool to manage configurations changes in sciCORE BioMedIT OpenStack is git.

● Everything that is automated is in a Git repository.

● OpenStack infrastructure installation and configuration tools Kayobe/Kolla-Ansible are initially 

cloned from GitHub 

○ Later our specific populated configs are stored in local branch in our gitlab.

● Almost all our deployment tools are written in Ansible.

● For project infrastructure provisioning we use Terraform.
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OpenStack deployment tool Kayobe
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• Kayobe enables deployment of containerized OpenStack to bare metal.
• Based on bifrost, Kolla and Kolla-ansible  (bifrost is a self contained Ironic service)
• Heavily automated using Ansible
• Deployment of a seed VM used to deploy the OpenStack control plane
• Configuration of physical network infrastructure
• Discovery, introspection and provisioning of control plane hardware using OpenStack bifrost
• Deployment of an OpenStack control plane using OpenStack Kolla-Ansible
• Discovery, introspection and provisioning of bare metal compute hosts using OpenStack ironic
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Deployment of projects in OpenStack 

Choosing the right tool

● We had previous experience using Ansible.

● When BioMedIT was started, we chose Kolla-Ansible for OpenStack deployment.

● Ansible provides many modules to interact with OpenStack API: 
https://docs.ansible.com/ansible/latest/collections/openstack/cloud/index.html

● For us the natural choice was to use Ansible for project bootstrap and configuration . 
DISCLAIMER: In our case, it ended up being non-optimal choice ;)
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Deployment of projects in OpenStack

Initial approach

● We started by writing all the automation for projects deployment in one big Ansible playbook

● Our initial playbook included (too) many different tasks:

○ Bootstrap the tenants. Create networks, subnets, routers, disk volumes, security group rules 
and boot VMs and create any other OpenStack resource

○ Query the resources using an ansible dynamic inventory plugin (custom developed)

○ Install project specific software/applications/services on VMs 

○ Deploy user accounts 
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Deployment of projects in OpenStack

First iteration
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Deployment of projects in OpenStack 

Issues encountered when using single playbook

● The code quickly became big, complex and hard to maintain:
○ Booting resources and configuring them in the same playbook increased complexity.

○ Some parts of the playbook used OpenStack API to create resources while other parts were 
configuring the VMs. 

○ We had to switch to different OpenStack credentials to work with different tenants and to be able to 
use the dynamic inventory.

○ Ansible is stateless. This is great for some use cases but it was a pain for our use case. Our 
playbook had to keep track of every deleted resource e.g. security group rules

● The Ansible dynamic inventory plugin was yet another piece of code to maintain
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Deployment of projects in OpenStack 

Rethinking our initial approach

● Once the code became too complex we realized (and accepted, this was harder ;) that it was 
difficult to maintain and it did not scale well. Therefore we decided to refactor.

● First we tried to split our ansible code in smaller independent playbooks:
○ Playbook 1 only interacting with OpenStack API (creating of networks, routers, VMs..etc)

○ Playbook 2 configuring all the VMs

● Second idea was to use Terraform to bootstrap resources (networks, routers, VMs…etc) and use 
ansible to configure them. This was the final choice.

● At this stage we finished firewall automated configuration which improved the process
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Deployment of projects in OpenStack

Second iteration
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Deployment of projects in OpenStack

Moving to Terraform + cookiecutter + Ansible

● We split the code in two smaller, simpler and easier to maintain pieces
○ Terraform interacts with the OpenStack API to bootstrap cloud resources (networks, VMs..)

○ Ansible only configures machines.

● Terraform’s stateful design helped to simplify the code interacting with the OpenStack API and 
managing cloud resources.

● We also took the opportunity to move from ansible dynamic inventory to ansible static inventory

● Structure of Ansible configuration was refactored
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Deployment of projects in OpenStack

Workflow to create a new project from scratch

● Collect project requirements.
● Create the terraform project using our cookiecutter template and adapt it to the project’s needs (add 

or remove extra VMs and resources).
● Bootstrap the project with terraform (networks, routers, VMs, security group rules…) . Each tenant 

has a dedicated git repo for the Terraform config and another private git repo to keep track 
infrastructure changes and the state for each tenant.

● Populate the ansible static inventory with the new booted VMs.
● Execute ansible to deploy required software and users accounts for the project.
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Lessons learned

● Dedicate people only for OpenStack, it is a full time job!

● Using external support is okay! (StackHPC)

● OpenStack is an excellent way to fully utilise available hardware but has an administrative overhead

● Deployment automation is a must.

● Automation keeps the environment homogenous, reduces mistakes and facilitates auditing

● Separate provisioning of infrastructure from configuration of services (keep it simple…)

● Services are what brings in the users and keeps the users! (focus on services, not on infrastructure)

○ Applies specifically to our project/case
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Example static inventory
################################

 [tenant_demo]
 demo-admin ansible_host=192.168.250.123 ansible_ssh_common_args='-F {{ playbook_dir }}/ssh_config_files/tenant_demo.ssh'
 demo-rdesktop ansible_host=192.168.250.124 ansible_ssh_common_args='-F {{ playbook_dir }}/ssh_config_files/tenant_demo.ssh'
 demo-guacamole ansible_host=192.168.250.125 ansible_ssh_common_args='-F {{ playbook_dir }}/ssh_config_files/tenant_demo.ssh'

[tenant_demo_admin]
demo-admin

[tenant_demo_rdesktop]
demo-rdesktop

[tenant_demo_guacamole]
demo-guacamole

[tenant_demo_nfs_clients]
demo-admin
demo-rdesktop

####  GLOBAL GROUPS  ####
#########################
#### Below this line you only define groups with children groups

[admin:children]
tenant_demo_admin

[rdesktop:children]
tenant_demo_rdesktop

[guacamole:children]
tenant_demo_guacamole
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Example dynamic inventory

./openstack_inventory.py –list
  
"meta_project_demo": [

"60fb9a69-86c3-4b94-bc25-a9b604c1a5d0",
"7139c663-5f8b-4df3-bced-d791d7ceb502"

  ],
  "meta_role_admin": [

"60fb9a69-86c3-4b94-bc25-a9b604c1a5d0"
  ],
  "meta_role_guacamole": [

"7139c663-5f8b-4df3-bced-d791d7ceb502"
  ],etc.
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Ansible playbook snippet launching guacamole:
 
- name: Launch the guacamole instance and attach a floating ip to 
it
  os_server:
    state: present
    name: "{{ openstack_project }}_guacamole"
    region_name: "{{ openstack_region }}"
    image: "{{ openstack_image_guacamole }}"
    key_name: "{{ openstack_key_name }}"
    flavor: "{{ openstack_flavor_guacamole }}"
    security_groups:
      - "{{ openstack_project }}_default"
      - "{{ openstack_project }}_guacamole"
      - "{{ openstack_project }}_allow_outgoing_traffic"
    network: "{{ openstack_project_network }}"
    wait: yes
    floating_ips: "{{ guacamole_public_ip }}"
    meta:
      hostname: "{{ openstack_project }}_guacamole"
      project: "{{ openstack_project }}"
      role: "guacamole"
      group: "nfs_clients"
  register: guacamole_machine_info
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Deployment of projects in OpenStack

Workflow to create a new project from scratch

● Collect project requirements.
● Create the terraform project using our cookiecutter template and adapt it to the project’s needs (add 

or remove extra VMs and resources).
● Bootstrap the project with terraform (networks, routers, VMs, security group rules…) . Each tenant 

has a dedicated git repo for the Terraform code to keep track infrastructure changes for each 
tenant.

● Populate the ansible static inventory with the new booted VMs.
● Execute ansible to deploy required software and users accounts for the project.
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Configuration management in BioMedIT sciCORE

● We try to apply the “infrastructure as code” (IaC) principle.

○ Useful for collaboration in the sysadmin team

○ Useful for change management and auditing

○ Useful for reproducibility



What is sciCOREMed

● Secure IT environment for sensitive data analysis

● Based on OpenStack private cloud

● Projects are isolated from each other (OpenStack multitenancy)

● Projects have no direct internet access


