
Configuration management on a secure
OpenStack environment
Jani Heikkinen, sciCORE
2022-05-22

Contents

● BiomedIT and BioMedIT sciCORE instance

● Architecture and features

● Challenges and requirements

● Design and infrastructure deployment tools

● Project deployment

● Lessons learned

● Acknowledgements

sciCORE
Center for Scientific Computing

2

BioMedIT Network

The BioMedIT Network builds on three legally independent
scientific IT competence platforms:

● sciCORE, operated by the University of Basel
● Romandie node operated by UNIL (previously SIB)
● SIS, operated by ETH Zurich

The BioMedIT network is coordinated by Data Coordination
Centre (DCC), hosted at SIB.

sciCORE
Center for Scientific Computing

3

OpenStack project architecture at sciCORE BioMedIT node

sciCORE
Center for Scientific Computing

4

Federated
services

BioM
edIT
node

s

users

sciCORE's BioMedIT node

compute
node

compute
node

compute
nodes

VDI
Jump Host

I/O
Host

SSH
Jump Host

Labkey

Web
services

Login node
rdesktop

Other
services
Other

services
Other

services

Project 1

Project 2
Project 3

RDP

SSH

SFTP

SSH
(2FA)

SFTP
(2FA)

HTTPS
(2FA)

==

Security Group
Ingress/egress
Permitted MACs,
IPs,Protocols

Storage
system

hospitals

SWITCH

BioMedIT
nodes

DCC

Internet
FW

 +
 IP

S

Project
x

Project
3

Project
2

Project
1

sciCORE BioMedIT project space features

sciCORE
Center for Scientific Computing

5

Challenges and requirements

Infrastructure challenges

● How to automate deployment, use resources efficiently, when to use external consultant?

Projects challenges

● How to automate project onboarding and deployment process?

● How to keep track on changes made on OpenStack?

● Where to put the focus on system administration?

● How to maximise usable resources (sysadmin time, services on top, using external contracts, etc.)

sciCORE
Center for Scientific Computing

6

Configuration management overview

● The main tool to manage configurations changes in sciCORE BioMedIT OpenStack is git.

● Everything that is automated is in a Git repository.

● OpenStack infrastructure installation and configuration tools Kayobe/Kolla-Ansible are initially

cloned from GitHub

○ Later our specific populated configs are stored in local branch in our gitlab.

● Almost all our deployment tools are written in Ansible.

● For project infrastructure provisioning we use Terraform.

sciCORE
Center for Scientific Computing

7

OpenStack deployment tool Kayobe

sciCORE
Center for Scientific Computing

8

• Kayobe enables deployment of containerized OpenStack to bare metal.
• Based on bifrost, Kolla and Kolla-ansible (bifrost is a self contained Ironic service)
• Heavily automated using Ansible
• Deployment of a seed VM used to deploy the OpenStack control plane
• Configuration of physical network infrastructure
• Discovery, introspection and provisioning of control plane hardware using OpenStack bifrost
• Deployment of an OpenStack control plane using OpenStack Kolla-Ansible
• Discovery, introspection and provisioning of bare metal compute hosts using OpenStack ironic

Controlplane
host

(OpenStack)

Control lne
host

(OpenStack)

Bare Metal compute
hosts

(user workloads)

Ansible control host
Kayobe kolla ansible

Seed host
(bifrost)

Network devices

Control plane host
(OpenStack)

Bare Metal compute
hosts

(user workloads)

Compute hosts
hypervisor/Bare Metal

(user workloads)

configures

provisionsprovisions

manages

Deployment of projects in OpenStack

Choosing the right tool

● We had previous experience using Ansible.

● When BioMedIT was started, we chose Kolla-Ansible for OpenStack deployment.

● Ansible provides many modules to interact with OpenStack API:
https://docs.ansible.com/ansible/latest/collections/openstack/cloud/index.html

● For us the natural choice was to use Ansible for project bootstrap and configuration .
DISCLAIMER: In our case, it ended up being non-optimal choice ;)

sciCORE
Center for Scientific Computing

9

https://docs.ansible.com/ansible/latest/collections/openstack/cloud/index.html

Deployment of projects in OpenStack

Initial approach

● We started by writing all the automation for projects deployment in one big Ansible playbook

● Our initial playbook included (too) many different tasks:

○ Bootstrap the tenants. Create networks, subnets, routers, disk volumes, security group rules
and boot VMs and create any other OpenStack resource

○ Query the resources using an ansible dynamic inventory plugin (custom developed)

○ Install project specific software/applications/services on VMs

○ Deploy user accounts

sciCORE
Center for Scientific Computing

10

Deployment of projects in OpenStack

First iteration

sciCORE
Center for Scientific Computing

11

Populate project
service variables,
Allocate floating

ip(s)

Initialise venv,
install ansible
deps (inside
admin VM)

guacamole

Create project
configuration

file

Create project
with
project-config
playbook

Authenticate
against openstack
API

Login to horizon,
download project
openrc file

Boot admin
VM

Copy adminrc file
inside the admin VM

Service N

rdesktop

Boot
resources,
admin VM in
tenant as a
control host

Deployment of projects in OpenStack

Issues encountered when using single playbook

● The code quickly became big, complex and hard to maintain:
○ Booting resources and configuring them in the same playbook increased complexity.

○ Some parts of the playbook used OpenStack API to create resources while other parts were
configuring the VMs.

○ We had to switch to different OpenStack credentials to work with different tenants and to be able to
use the dynamic inventory.

○ Ansible is stateless. This is great for some use cases but it was a pain for our use case. Our
playbook had to keep track of every deleted resource e.g. security group rules

● The Ansible dynamic inventory plugin was yet another piece of code to maintain

sciCORE
Center for Scientific Computing

12

Deployment of projects in OpenStack

Rethinking our initial approach

● Once the code became too complex we realized (and accepted, this was harder ;) that it was
difficult to maintain and it did not scale well. Therefore we decided to refactor.

● First we tried to split our ansible code in smaller independent playbooks:
○ Playbook 1 only interacting with OpenStack API (creating of networks, routers, VMs..etc)

○ Playbook 2 configuring all the VMs

● Second idea was to use Terraform to bootstrap resources (networks, routers, VMs…etc) and use
ansible to configure them. This was the final choice.

● At this stage we finished firewall automated configuration which improved the process

sciCORE
Center for Scientific Computing

13

Deployment of projects in OpenStack

Second iteration

sciCORE
Center for Scientific Computing

14

Populate project
service variables

Configure admin
machine

(also ssh
jumphost)

guacamole

Create project
configuration

file

Create project
with
project-config
playbook

Authenticate
against openstack
API

Boot admin
VM

Service N

rdesktop

Boot resources
Config resources

Deployment of projects in OpenStack

Moving to Terraform + cookiecutter + Ansible

● We split the code in two smaller, simpler and easier to maintain pieces
○ Terraform interacts with the OpenStack API to bootstrap cloud resources (networks, VMs..)

○ Ansible only configures machines.

● Terraform’s stateful design helped to simplify the code interacting with the OpenStack API and
managing cloud resources.

● We also took the opportunity to move from ansible dynamic inventory to ansible static inventory

● Structure of Ansible configuration was refactored

sciCORE
Center for Scientific Computing

15

Deployment of projects in OpenStack

Workflow to create a new project from scratch

● Collect project requirements.
● Create the terraform project using our cookiecutter template and adapt it to the project’s needs (add

or remove extra VMs and resources).
● Bootstrap the project with terraform (networks, routers, VMs, security group rules…) . Each tenant

has a dedicated git repo for the Terraform config and another private git repo to keep track
infrastructure changes and the state for each tenant.

● Populate the ansible static inventory with the new booted VMs.
● Execute ansible to deploy required software and users accounts for the project.

sciCORE
Center for Scientific Computing

16

Require-
ments

Terraform
configuration

Populate
Ansible

inventory

Project
services

Terraform
spawns the
resources

Deploy
configuration
with Ansible

Define
resources

Lessons learned

● Dedicate people only for OpenStack, it is a full time job!

● Using external support is okay! (StackHPC)

● OpenStack is an excellent way to fully utilise available hardware but has an administrative overhead

● Deployment automation is a must.

● Automation keeps the environment homogenous, reduces mistakes and facilitates auditing

● Separate provisioning of infrastructure from configuration of services (keep it simple…)

● Services are what brings in the users and keeps the users! (focus on services, not on infrastructure)

○ Applies specifically to our project/case

sciCORE
Center for Scientific Computing

17

Acknowledgements
People:
Pablo Escobar Lopez
Sudershan Thirunavukkarasu
Martin Jacquot
Thierry Sengstag
sciCORE team

Collaborators:
CoreIT at UNIL and SIB
SIS at ETHZ
StackHPC UK
SPHN DCC at SIB

Links:
BioMedIT https://www.biomedit.ch
SPHN https://sphn.ch
sciCORE https://scicore.unibas.ch
stackHPC https://stackhpc.com
Kayobe https://docs.openstack.org/kayobe/latest/
Kolla-Ansible https://docs.openstack.org/kolla-ansible/latest/
Terraform: https://www.terraform.io/

sciCORE
Center for Scientific Computing

18

https://www.biomedit.ch/
https://sphn.ch
https://scicore.unibas.ch
https://stackhpc.com
https://docs.openstack.org/kayobe/latest/
https://docs.openstack.org/kolla-ansible/latest/
https://www.terraform.io/

Thank you
for your attention.

Example static inventory
################################

 [tenant_demo]
 demo-admin ansible_host=192.168.250.123 ansible_ssh_common_args='-F {{ playbook_dir }}/ssh_config_files/tenant_demo.ssh'
 demo-rdesktop ansible_host=192.168.250.124 ansible_ssh_common_args='-F {{ playbook_dir }}/ssh_config_files/tenant_demo.ssh'
 demo-guacamole ansible_host=192.168.250.125 ansible_ssh_common_args='-F {{ playbook_dir }}/ssh_config_files/tenant_demo.ssh'

[tenant_demo_admin]
demo-admin

[tenant_demo_rdesktop]
demo-rdesktop

[tenant_demo_guacamole]
demo-guacamole

[tenant_demo_nfs_clients]
demo-admin
demo-rdesktop

GLOBAL GROUPS
#########################
Below this line you only define groups with children groups

[admin:children]
tenant_demo_admin

[rdesktop:children]
tenant_demo_rdesktop

[guacamole:children]
tenant_demo_guacamole

sciCORE
Center for Scientific Computing

20

Example dynamic inventory

./openstack_inventory.py –list

"meta_project_demo": [

"60fb9a69-86c3-4b94-bc25-a9b604c1a5d0",
"7139c663-5f8b-4df3-bced-d791d7ceb502"

],
 "meta_role_admin": [

"60fb9a69-86c3-4b94-bc25-a9b604c1a5d0"
],
 "meta_role_guacamole": [

"7139c663-5f8b-4df3-bced-d791d7ceb502"
],etc.

sciCORE
Center for Scientific Computing

21

Ansible playbook snippet launching guacamole:

- name: Launch the guacamole instance and attach a floating ip to
it
 os_server:
 state: present
 name: "{{ openstack_project }}_guacamole"
 region_name: "{{ openstack_region }}"
 image: "{{ openstack_image_guacamole }}"
 key_name: "{{ openstack_key_name }}"
 flavor: "{{ openstack_flavor_guacamole }}"
 security_groups:
 - "{{ openstack_project }}_default"
 - "{{ openstack_project }}_guacamole"
 - "{{ openstack_project }}_allow_outgoing_traffic"
 network: "{{ openstack_project_network }}"
 wait: yes
 floating_ips: "{{ guacamole_public_ip }}"
 meta:
 hostname: "{{ openstack_project }}_guacamole"
 project: "{{ openstack_project }}"
 role: "guacamole"
 group: "nfs_clients"
 register: guacamole_machine_info

sciCORE
Center for Scientific Computing

22

Configuration management on a secure
OpenStack environment

Jani Heikkinen

hpc-ch forum 19/05/2022

Deployment of projects in OpenStack

Workflow to create a new project from scratch

● Collect project requirements.
● Create the terraform project using our cookiecutter template and adapt it to the project’s needs (add

or remove extra VMs and resources).
● Bootstrap the project with terraform (networks, routers, VMs, security group rules…) . Each tenant

has a dedicated git repo for the Terraform code to keep track infrastructure changes for each
tenant.

● Populate the ansible static inventory with the new booted VMs.
● Execute ansible to deploy required software and users accounts for the project.

sciCORE
Center for Scientific Computing

24

Configuration management in BioMedIT sciCORE

● We try to apply the “infrastructure as code” (IaC) principle.

○ Useful for collaboration in the sysadmin team

○ Useful for change management and auditing

○ Useful for reproducibility

What is sciCOREMed

● Secure IT environment for sensitive data analysis

● Based on OpenStack private cloud

● Projects are isolated from each other (OpenStack multitenancy)

● Projects have no direct internet access

