
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Sven Augustin :: SCD/AWI/EIDO (7901) :: Paul Scherrer Institut

Tools at SwissFEL: slic & sfdata

AWI Bi-Monthly Meeting – 3rd May 2022

SwissFEL Library for Instrument Control

slic – Overview

▶ Python library→ toolbox for creating
▶ control environments,
▶ automation scripts,
▶ GUIs

for experiments.

▶ Common experiment control system for all* SwissFEL instruments.
→ Used at:
▶ Alvra
▶ Cristallina
▶ Furka
▶ Maloja

▶ Needs & Goals:
▶ CLI (ipython), scripting and GUI.
▶ Maximum flexibility for rapidly changing endstations.
▶ Extensible by BL scientists / external users with minimal training.

*OK, almost all...

slic – Organization

▶ Clear separation between:
▶ Experiment control library
▶ Endstation codes

▶ Different parts may move with
different speed.

▶ Clear border between working and
in-development code:
▶ New features can be build

for an individual endstation,
▶ when ready, they may be generalized

and moved into the common library.

slic – Overview

▶ High-level layer combining the different services:
▶ epics devices
▶ custom / non-epics / user devices
▶ sf-daq
▶ bsread
▶ epics monitors
▶ DataAPI (epics archiver, image-/databuffer)
▶ etc.

▶ Scan engine

▶ General-purpose devices

▶ Straight-forward building of complex devices
from various components
→ Hardware abstraction layer

Press all the buttons!
Dial all the knobs!

slic – Hardware Abstraction

Hardware abstraction layer:
▶ Adjustable: single component / scannable axis
▶ Device assembled from Adjustables and other Devices

Bridges gap(s) between internal hardware implementation and
user-facing coherent device representation.

Example:

▶ Change the FEL photon energy (== one Adjustable)← User
▶ via n undulator gaps (== n epics PVs)← Controls
▶ while maintaining the taper (== some math)← Beam Dynamics

slic – Hardware Abstraction

Built-in Adjustable types:

from slic.devices import Motor

mot = Motor("SPOES10-MANIP1:MOT1", name="Our favorite motor")

from slic.core import PVAdjustable

with moving status PV
laser_delay = PVAdjustable(

"SPOES10-LASER:SETVALUE",
"SPOES10-LASER:READBACK",
"SPOES10-LASER:MOVING",
name="Laser Delay"

)

without moving status PV
trigger_delay = PVAdjustable(

"SPOES10-CVME-EVR0:Pul1-Delay-SP",
"SPOES10-CVME-EVR0:Pul1-Delay-RB",
accuracy=1,
name="Trigger Delay"

)

etc. etc.

slic – Hardware Abstraction

New Adjustable type definition:

from slic.core import Adjustable

class MyNewCoolThing(Adjustable):

pos = 0

def get_current_value(self):
return self.pos

def set_target_value(self, value):
self.pos = value

def is_moving(self):
return False # OK OK, this is probably cheating ;)

cool = MyNewCoolThing(name="My New Cool Thing")

▶ Useful built-in methods: adj.tweak(delta), ...
▶ and shorthands: adj.set(value), adj.moving property, ...
▶ Appears automatically in the GUI

slic – Hardware Abstraction
Device definition:

from slic.devices import Motor, SimpleDevice

mot_x = Motor("SPOES21-STAGE1:MOT_X", name="X")
mot_y = Motor("SPOES21-STAGE1:MOT_Y", name="Y")
mot_z = Motor("SPOES21-STAGE1:MOT_Z", name="Z")

stage3d = SimpleDevice("3D Stage", x=mot_x, y=mot_y, z=mot_z)

stuff = SimpleDevice("All our stuff",
stages=SimpleDevice("Stages", stage3d=stage3d),
some_other_thing=dummy

)

Interactive usage:

>>> stage3d
3D Stage:

x: 10.2 mm
y: 0.1 mm
z: 123.4 mm

>>> stage3d.x
Motor "X" at 10.2 mm

>>> stuff
All our stuff:

some_other_thing: 1000 au
stages.stage3d.x: 10.2 mm
stages.stage3d.y: 0.1 mm
stages.stage3d.z: 123.4 mm

>>> stuff.stages
Stages:

stage3d.x: 10.2 mm
stage3d.y: 0.1 mm
stage3d.z: 123.4 mm

slic – Components

daq = SFAcquisition(
instrument, pgroup,
default_channels=channels

)

check_intensity = PVCondition(
"SARFE10-PBPG050:INTENSITY",
vmin=0, vmax=1500,
wait_time=3, required_fraction=0.8

)

scan = Scanner(
default_acquisitions=[daq],
condition=check_intensity

)

gui = GUI(scan)

Scanner

Condition Adjustable

Task

set
target

Task
scan

Acquisition

Task

acquire

Device

Adjustables

Devices

scan.scan1D(
adjustable, start_pos, end_pos, step_size,
n_pulses, filename,
relative=False, return_to_initial_values=True, repeat=1, ...

)

slic – GUI

scan.scan1D(
adjustable, start_pos, end_pos, step_size,
n_pulses, filename,
relative=False, return_to_initial_values=True, repeat=1, ...

)

slic – GUI

slic – GUI

Questions?

sfdata

FEL Data Analysis

▶ Needs for data analysis at FELs changing from experiment to experiment.

▶ Instead of providing ready-made solutions for a bespoke type of
experiment, it is common practice to provide tools (for BL staff and users)
to build an analysis quickly.

▶ Common setup used at all† SwissFEL instruments:
▶ Jupyter (on Ra)
▶ sfdata (internally using jungfrau_utils for JF data)

†OK, almost all...

sfdata – Motivation

Lower the bar as much as possible for users to analyze arbitrary data from
rapidly changing endstations.

SwissFEL data is (historically and currently) written to several independent and
slightly inconsistent hdf5 files per acquisition (acq0123.*.h5):
▶ BS scalars and waveforms → *.BSDATA.h5
▶ BS camera images → *.CAMERAS.h5
▶ for each Jungfrau detector → *.JF*.h5
▶ epics scalars and waveforms → *.PVCHANNELS.h5

plus a json file with scan metadata.

Missing Pulses!
FEL data analysis usually has to be shot-by-shot (due to inherent fluctuations)
→ Pulses missing from arbitrary sources have to dealt with correctly.

sfdata – Single Acquisition

sfdata instead of plain h5py→ Hide complexity from the user:

from matplotlib import pyplot as plt
from sfdata import SFDataFiles

fns = "/sf/instrument/data/p12345/raw/run0001/data/acq0001.*.h5"
with SFDataFiles(fns) as data:

subset = data["SIGNAL", "BACKGROUND"] # select channels
subset.drop_missing() # make channels consistent
pids = subset["SIGNAL"].pids # read pulse IDs
sig = subset["SIGNAL"].data # read data
bkg = subset["BACKGROUND"].data

norm = sig - bkg

plt.plot(pids, norm)
plt.show()

▶ Open all files from one acquisition,
▶ merge channels into one dict-like object.

All for one,
and one for all!

sfdata – Scan

Similarly for scans:

from matplotlib import pyplot as plt
from sfdata import SFScanInfo

fn = "/sf/instrument/data/p12345/raw/run0001/meta/scan.json"
scan = SFScanInfo(fn)

xs = scan.readbacks
ys = np.empty_like(xs)

for i, step in enumerate(scan):
step is a SFDataFiles object

subset = step["SIGNAL", "BACKGROUND"]
subset.drop_missing()
pids = subset["SIGNAL"].pids
sig = subset["SIGNAL"].data
bkg = subset["BACKGROUND"].data

ys[i] = sig - bkg

plt.plot(xs, ys)
plt.show()

sfdata – Further Nice Things

f = SFDataFiles(fns)
ch = f["SIGNAL"]

Reading slices:

read only a 100x100 ROI of the first 10 images
rois = ch[:10, 200:300, 400:500]

Reading in batches:

for indices, batch in ch.in_batches(n=3, size=100):
for image in batch:

do_something_with(image)

intensity = np.empty(ch.nvalid)
for indices, batch in ch.in_batches():

intensity[indices] = batch.sum(axis=(1, 2))

def proc(batch):
return batch.sum(axis=(1, 2))

intensity = ch.apply_in_batches(proc)

sfdata – Further Nice Things

▶ For valid data: len(ch), ch.shape, ch.ndim, ch.size
▶ Timing offsets:

subset = data["SIGNAL", "BACKGROUND"]
ch_sig = subset["SIGNAL"]
ch_bkg = subset["BACKGROUND"]

ch_bkg.offset = 1 # channel is delayed by one pid
subset.drop_missing() # takes offset into account

▶ Built-in conversion to (e.g., for imputation):
▶ Pandas DataFrames
▶ xarrays

▶ Statistics (also as command-line tool):

sfdata – Outlook

Currently investigated idea: Move away from full file names.

load = make_loader(instrument="alvra", pgroup="p12345")

Open a single run:

run = load(run=10)
ch = run["SIGNAL"]
...

Loop over several runs:

runs = load(run=range(10))
for run in runs:

ch = run["SIGNAL"]
...

Overwrite default parameters:

run = load(pgroup="p23456", run=10)

Allowing wildcards: pgroup="p12*", etc.
and alternative spellings: run=1, run="01", run="run1", etc.

Thank you for your attention!

