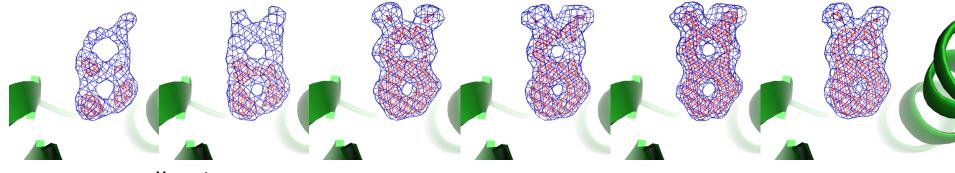

May Sharpe :: Group Leader MX Samples :: Paul Scherrer Institut

HTP Crystallographic Screening for Fragment Based Drug Discovery at the SLS

SLS MX User Meeting 2022, 1st March 2022, PSI

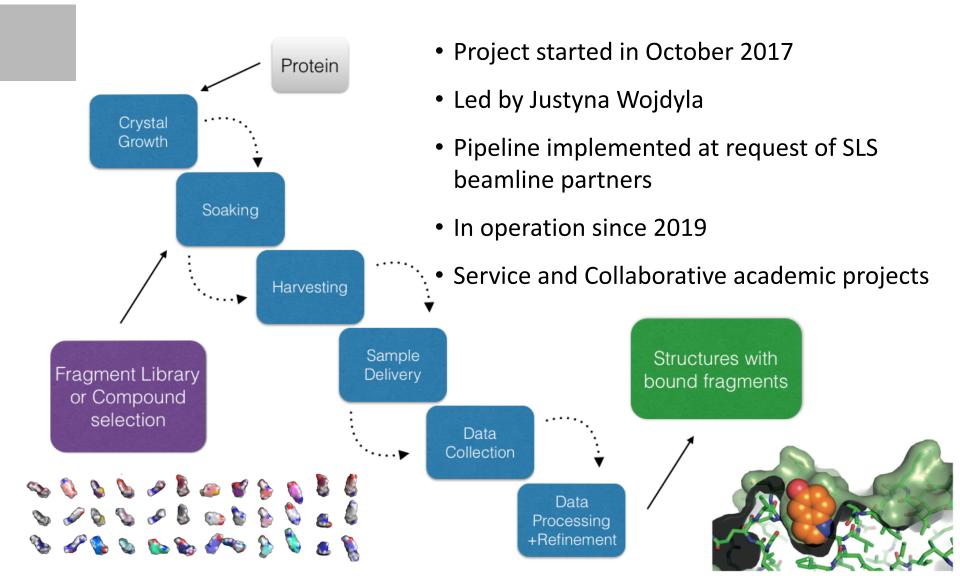
- FBDD is a productive alternative to traditional screening (HTS)
- Screen much smaller collections of much simpler compounds
- Allows efficient exploration of chemical space
- Identify fragments hits, then grow or link to increase potency
- Pharma partners already use FBDD
- Increasing use in academia
- Usually screen with biophysical techniques to identify hits



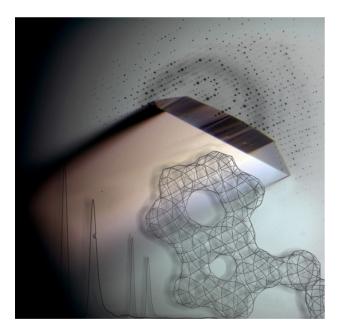
De Souza Neto *et al.,* (2020). Frontiers in Chemistry 8

Crystallography for FBDD

- Crystallography works extremely well as a primary screen
- Crystallography essential for follow-up of hits from other techniques
- Conditions favour occupancy for weak binders

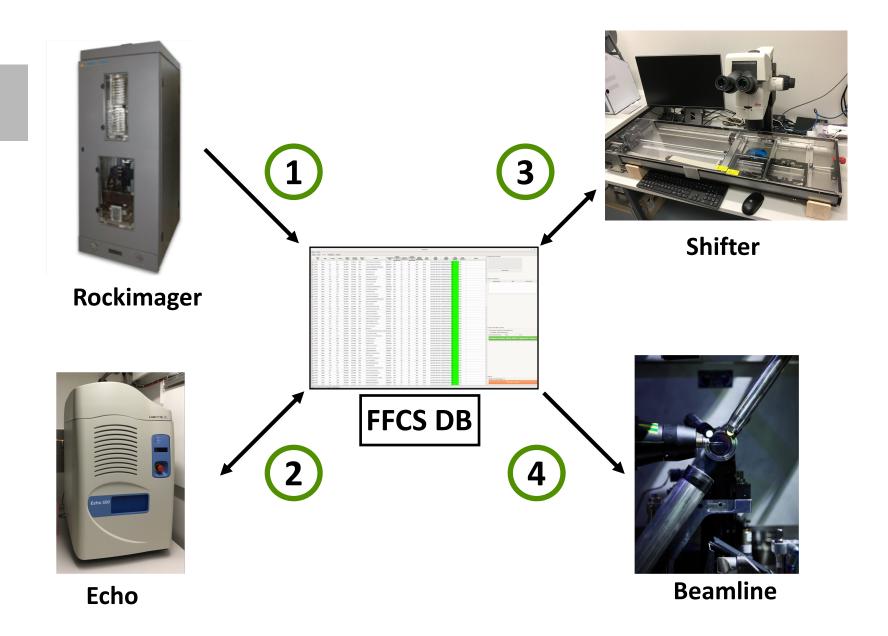

collection

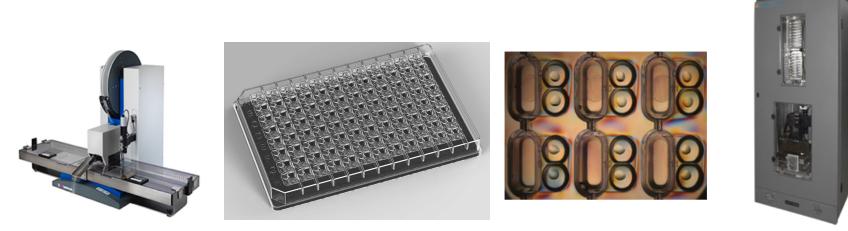
• Crystallographic FBDD Pipeline implemented at the SLS


Fast Fragment and Compound Screening (FFCS) Pipeline at the SLS

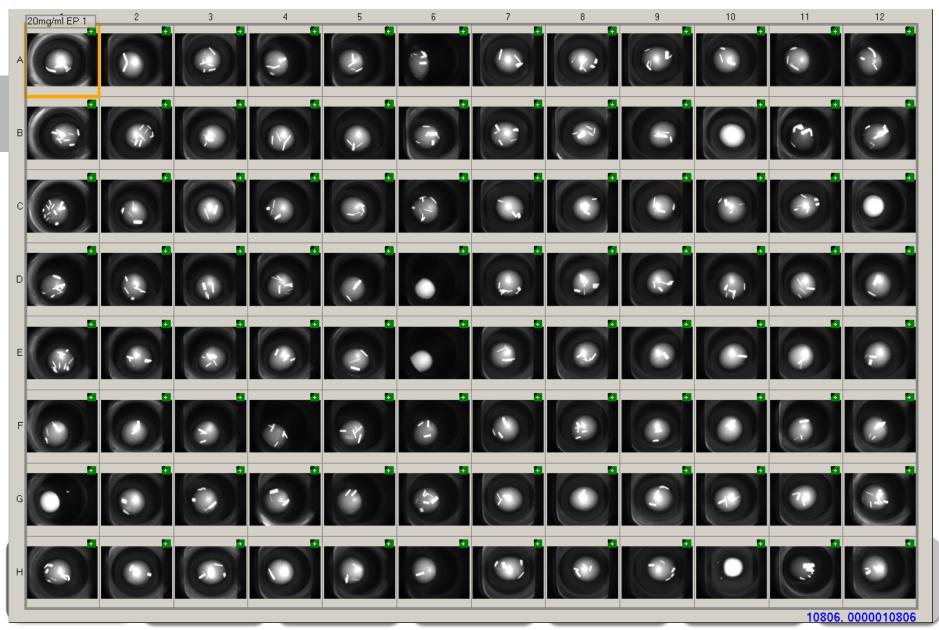
Fragment Logistics

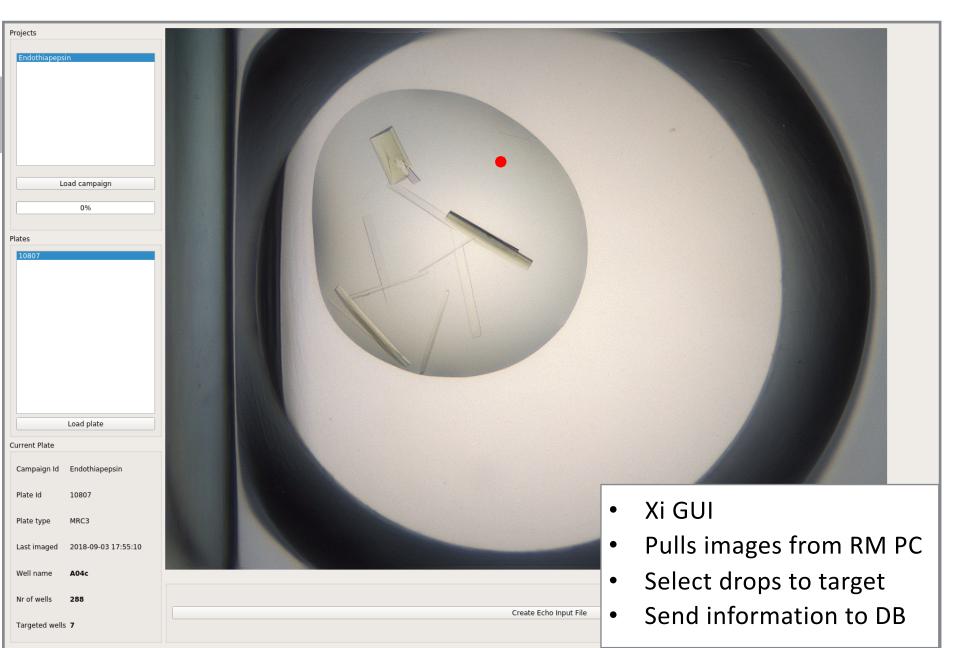
- Key component of pipeline
- Link compounds to crystals to datasets
- Automated, detailed and robust
- In-house design: FFCS Database + GUI
- Relational database as fragment campaign hub
- Generates input files and collects output files for all devices
- Organises crystal plates, cryo protection, soaking and fishing




Fragment Logistics

Growing and Locating Optimal Crystals


- Need large numbers of high-quality protein crystals
- Need to reproduced in 96 well plates
- Typical drop volumes 200- 400nl
- Need to identify which drops contain suitable crystals and location in drop

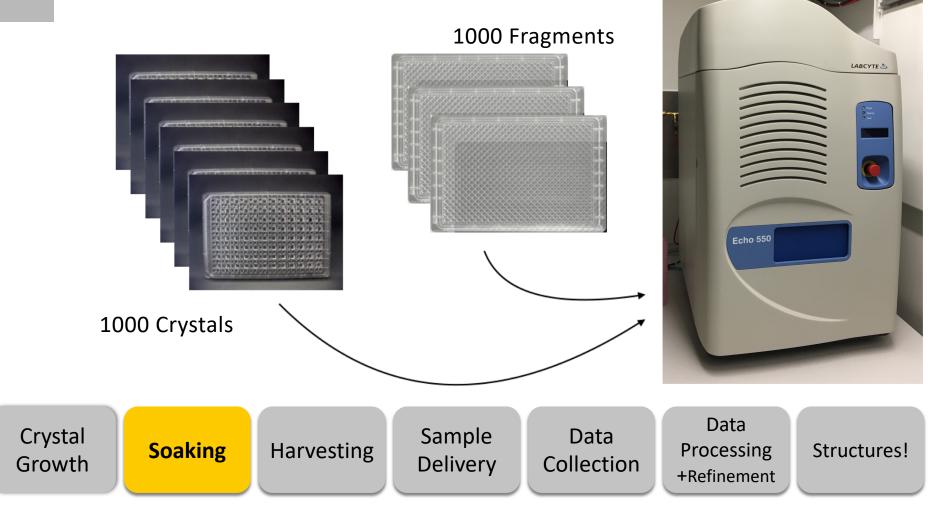


Crystal Identification

Crystal Identification

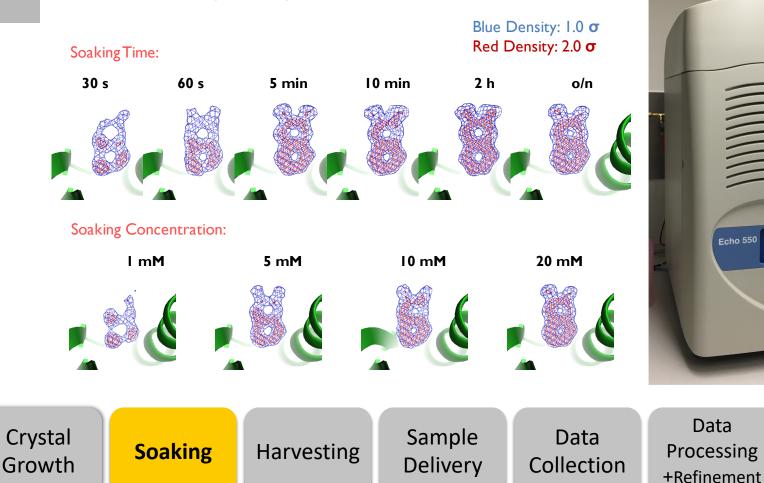
Crystal Soaking

Pla	tes Cryo	Soaking	Redissolve	Fishing									
	Plate Id	Well	X [um]	Y [um]	Library Name	Library Barcode	Source Well	Smiles	Compound Code	Ligand oncentratio In .ibrary [mM]	Volume [%]	Ligand oncentratio In Drop [mM]	Volume Inl
55	10780	D05a	9	26	FFCS057	FFCS057	AB33	CCclc(O)c2ccccc2[nH]cl=O	RJC01476	200	20	40	100
56	10780	D05c	-60	166	FFCS057	FFCS057	S43	Cl.clcnc2c(cl)ccclcccncl2	JFD03909	200	20	40	100
57	10780	D06a	-14	126	FFCS057	FFCS057	К44	C1C2C3C4OC5C3C1C1C2C4C51	BTB12415	200	20	40	100
58	10780	D07a	86	267	FFCS057	FFCS057	AC18	NCclccc(C(F)(F)F)ccl	TL00150	200	20	40	100
59	10780	D09a	273	215	FFCS057	FFCS057	114	Oclc(Cl)cccclCl	5801838	200	20	40	100
60	10780	E01a	75	-152	FFCS057	FFCS057	J35	N#CN1CCOCC1	SB00580	200	20	40	100
61	10780	E01c	479	232	FFCS057	FFCS057	AB26	OCclcccccl-clcccccl	JFD03959	200	20	40	100
62	10780	E03a	247	23	FFCS057	FFCS057	H35	CN1CCN(C)C(CN)C1	CC13813	200	20	40	100
63	10780	E03c	-408	459	FFC5057	FFC5057	H46	Cclcccc(C)clC#N	TL00285	200	20	40	100
64	10780	E04a	-40	-548	FFCS057	FFCS057	Y08	Clc1nsc(Cl)n1	AC37603	200	20	40	100


- Soaking coordinates transferred to DB
- Fragment Library loaded and assigned to drops
- Input file for Echo created and transferred to Echo PC
- Echo run results transferred to DB

Collins *et al.*, (2017). Acta Cryst. D73, 246-255

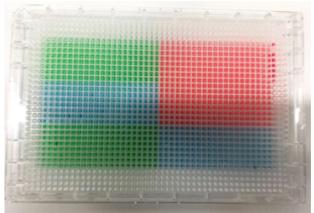
- Fragments transferred to the crystal containing drops using a Labcyte Echo 550 acoustic liquid handler
- Coordinates transferred from FFCS Database



- Soaking parameters first need to be optimized
- Maximum soaking time (1– 24 hours) and maximum DMSO soaking concentration (5 -30%) determined

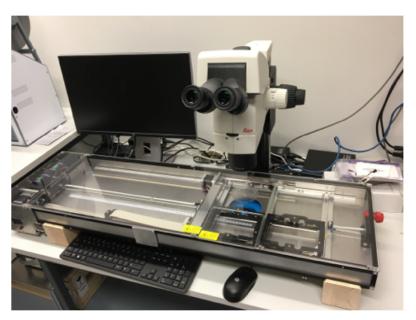
LABCYTE 🍮

Structures!



Fragment and Compound Library Storage

- Stored in hermetically sealed dry environment (N2 purged)
- Heat sealed plates
- Limit number of times opened
- Extensive advice from Idorsia Compound Library and Screening
- Idorsia 1056 library and Maybridge 2500 library
- Utilize any library stored in Echo compatible plates


Crystal Harvesting

- Utilize Shifter robot (Oxford Lab Technology)
- Manually assisted harvesting
- Shifter input file generated by FFCS DB
- Automates all repetitive steps
- Can freeze 100-150 crystals per hour

Wright *et al.*, (2021). Acta Cryst. D77, 62-74

• Barcoded pucks

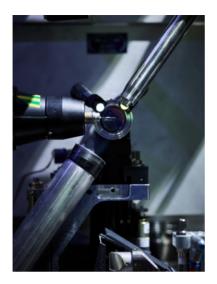
Developed at Diamond Light Source

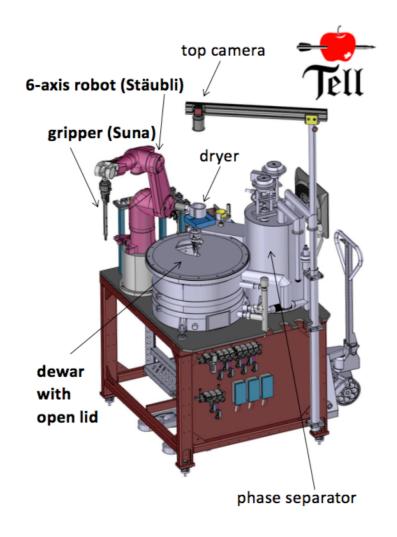
Crystal
GrowthSoakingHarvestingSample
DeliveryData
CollectionData
Processing
+RefinementData
Structures!

PAUL SCHERRER INSTITUT

Sample Delivery

Optio	ons Expert							
Pla		solve Fishing				B		
49	Plate Id 10780	Well C12a	Fishing Result OK: Mounted Clear	Fishing Time 18-08-30 15:45:59	Fishing Duration 00:01:20	Puck Barcode CFSLS010	Puck Position	-(
50	10780	D01a	OK: Mounted Clear	18-08-30 15:47:27	00:00:32	CFSLS010	4	-(
51	10780	D01c	OK: Mounted Clear	18-08-30 13:39:15	00:00:47	CFSLS009	5	-(
52	10780	D02a	OK: Mounted Clear	18-08-30 13:40:04	00:00:27	CFSLS009	6	-0
53	10780	D02c	OK: Mounted Clear	18-08-30 15:48:02	00:00:40	CFSLS010	5	-0
54	10780	D03c	OK: Mounted Clear	18-08-30 15:48:44	00:01:00	CFSLS010	6	-0
55	10780	D05a	OK: Mounted Clear	18-09-04 13:01:24	00:00:37	CFSL5003	1	-0
56	10780	D05c	OK: Mounted Clear	18-09-04 13:02:04	00:00:41	CFSL5003	2	-0
57	10780	D06a	OK: Mounted Clear	18-09-04 13:02:47	00:00:31	CFSLS003	3	-0
58	10780	D07a	OK: Mounted Clear	18-09-04 13:03:19	00:00:19	CFSLS003	4	-0
59	10780	D09a	OK: Mounted Clear	18-09-04 13:03:41	00:00:19	CFSL5003	5	-0
60	10780	E01a	OK: Mounted Clear	18-09-04 13:04:02	00:01:21	CFSL5003	6	-0
61	10780	E01c	OK: Mounted Clear	18-09-04 13:05:24	00:00:29	CFSLS003	7	-0





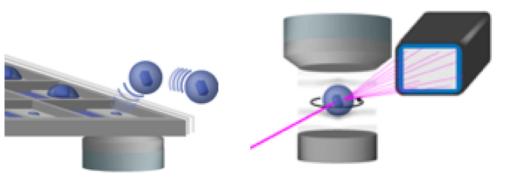
Data Collection

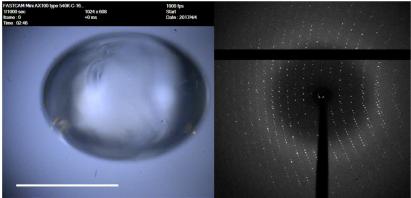
- Crystals delivered to beam using in house designed sample changer robot
- 20-30 samples / hour
- Unattended data collection

Martiel et al., (2020). J. Sync. Rad. 27, 860-863

DMSO free soaking

Opti	ons	Expert				
Pla	tes	Сгуо	Soaking	Redissolve		Fishing
	Well					
49	107	80			C12a	
50	50 10780				D01a	


- DMSO can block binding sites and damage crystals
- The pipeline is based around DMSO stocks of compounds
- Can we dispense from DMSO stocks and then get rid of the DMSO?
- Dry fragment onto crystallisation plate, re-suspend in crystal soaking solution
- Transfer crystal to plate \rightarrow soak \rightarrow harvest
- Echo used to transfer both fragments and soaking solution
- Shifter expedites transfer of crystals to soaking plate



Acoustic Droplet Levitation for Sample Delivery

- Crystal handling and freezing takes a lot of time and manual effort.
- Medicinal chemistry would benefit from RT data (e.g. RT water structure).
- Crystal delivery by acoustic droplet levitation would transform crystal handling.
- Would enable rapid, automated collection of RT data for fragment screening.

S. Tsujino & T. Tomizaki, Scientific Reports 6, 25558 (2016).

Acknowledgements

• PSI

- Justyna Wojdyla
- Kuba Kaminski
- Laura Vera
- Chia-Ying Huang
- Deniz Eris
- Meitian Wang
- Nathalie Meier
- Dominik Buntschu
- Roman Schneider
- Sonia Reber
- Idorsia
 - Oliver Peter
 - Aengus Mac Sweeney
 - Geoffroy Bourquin

Sharpe *et al*, Nippon Kessho Gakkai-Shi (2021) **63**(3) 232 Kaminski *et al*., (2022). Acta Cryst. D**78**, 328-336

