

John Beale :: SLS User Meeting :: Paul Scherrer Institut

Serial crystallography at SLS and SwissFEL

01.03.2022

- Summary of serial crystallography at PSI:
 - SwissFEL ALvra and Cristallina
 - SLS
- Current developments
- Vision for the future

SwissFEL overview

ARAMIS

- hard X-ray (1.8 12.4 keV)
- 300 600 μJ per pulse
- first users 2018

• ATHOS

- soft X-ray (240 1,930 eV)
- first users 2021

SwissFEL overview - ARAMIS beamline

- ARAMIS is the SwissFEL hard X-ray beamline and delivers beam to three endstations: Alvra, Bernina and now, Cristallina.
- Alvra has been the primary site of SFX experiments at SwissFEL where the endstation is shared between SFX and spectroscopy users.
- Cristallina will be shared between SFX and quantum technologies.

SwissFEL overview - Alvra: fs time-resolved SFX using extruders and jets

- Alvra-PRIME endstation is very much the home of jetting experiments at SwissFEL and ultra-fast time-resolved measurements.
- Cristallina should complement Alvra by offering different sample delivery systems and different experiments.

SwissFEL overview - Cristallina Endstation

SwissFEL overview - Cristallina Endstation

Experimental scope of Cristallina - pump-probe SFX and SFX

- CrMX will aim to do at least 50:50 pump-probe SFX and SFX experiments.
- SFX experiments can be shorter and easier for non-SFX groups.
- SFX can also act as a bridge for new users to gain access and experience at the XFEL.

CrMX mission - increase XFEL access

 The principal goal of the Cristallina-MX project is to reduce the activation barriers to XFEL research and thereby, increase the user pool and breath of proposed projects.

- Summary of serial crystallography at PSI:
 - SwissFEL ALvra and Cristallina
 - SLS
- Current developments
- Vision for the future

VESPA at PXI - offer complimentary methods to SwissFEL

 Flexible endstation at PXI 2nd source to accommodate different types of serial crystallography experiments and sample delivery systems.

VESPA - "Versatile End-station for Serial Protein crystallography Applications" - Ezequiel Panepucci

VESPA at PXI - offer complimentary methods to SwissFEL

- MOD1 endstation with the extruder.
- Features:
 - High speed detector (Eiger 1M).
 - Integrated (ns) laser triggering for time-resolved work.
 - Modular setup for different experiments.

- Summary of serial crystallography at PSI:
 - SwissFEL ALvra and Cristallina
 - SLS
- Current developments
- Vision for the future

Time-resolved crystallography at SLS and SwissFEL

- Light-triggered, time-resolved crystallography well established at with the extruder at Alvra and PX1.
- However, very few proteins use light as a substrate.

Time-resolved crystallography at SLS and SwissFEL

 We were successful in getting a PSI research grant to establish fixedtarget mixing at both VESPA and Cristallina.

- Summary of serial crystallography at PSI:
 - SwissFEL ALvra and Cristallina
 - SLS
- Current developments
- Vision for the future

Vision for serial crystallography at PSI

Vision for serial crystallography at PSI

Opportunities and limitations of the SLS 2.0

- SLS 2.0 still limited to crystal larger than 5 μm.
- BUT data could be collected in 1/1000 of the time.

Time-resolved crystallography at the SLS 2.0

 What does a 10 µs data collection time mean for time-resolved crystallography?

$$E + S \iff ES_1 \longrightarrow ES_2 \longrightarrow ES_3 \longrightarrow P + E$$

Time-resolved crystallography at the SLS 2.0

$$E + S \iff ES_1 \longrightarrow ES_2 \longrightarrow ES_3 \longrightarrow P + E$$

- There will now be two SFX endstations at SwissFEL:
 - Alvra:
 - Jets
 - fs pump-probe
 - Cristallina:
 - Fixed-tagets
 - ns pump-probe
 - mixing
- VESPA @ PXI able to act as bridge to all thing
- A team is being formed to streamline and assist users to better access and make use of these facilities.

Wir schaffen Wissen - heute für morgen

Many thanks to:

MX Group

Meitian Wang
May Sharpe
Justyna Wojdyla
Florian Dworkowski
Wayne Glettig
Chia-Ying Huang
Dominik Buntschu
Sylvain Aumonier
Takashi Tomizaki
Isabelle Martiel (now SBB)

BIO

Celestino Padeste Agniezska Karpik Melissa Carrillo

AIK

Jan Hora Nico Gradwohl

Alvra Group

Chris Milne (now EuXFEL)
Camila Bacellar
Claudio Cirelli
Emma Beale

Pump Laser Group

Yunpei Deng Philip Johnson

Cristallina Beamline Project

Bill Pedrini Simon Gerber Rübi Kälin

Detector Group

Aldo Mozzanica Shqipe Hasanaj Seraphin Vetter

Cristallina Steering Committee

