PAUL SCHERRER INSTITUT

Paul Scherrer Institute Sven Reiche, Martin Paraliev, Paolo Craievich

Initial Design of Porthos Switchyard and Possible Synergy with P³ experiment

- Maximum beam energy of up to 8 GeV
- Resonant extraction, similar to Athos switchyard (kicker+Septum approach)
- Injection with a 10 mm vertical offset.
- Transverse offset of 5.5 m with respect to Aramis line
- Reserve space for possible acceleration of Porthos bunch

Lesson learned from Athos

Avoid central dipole to decouple optics and compression

Requires stronger septum but helps with separation

 Add chicane in the middle to compensate for the R56 of the two double-bend section and to minimize effect of microbunch instability.

Porthos Extraction Layout

Possible starting point for accelerator experiments (e.g. P³)

Dipole Strength Requirement

Location	Count	Angle	Length*	
Septum	1	2.5	1.2**	New
SPOSY01	1	2.5	0.71	New***
SPOSY02	2	0.1	0.03	AFBC1
SPOSY03	4	1.3	0.37	New
SPOCL01	2	2.5	0.71	New

*scaled from AFD1 (2 m with 8 degree at 7 GeV)

**Info from M. Paraliev for an aggressive design. A scaled version from Athos septum would require about 2 m.

***Info from P. Craievich: B190 Dipole from CERN with 1.9 m length can deflect up to to 6.5 degree at 8 GeV.

CSR effect favors shortes possible magnet length.

Quadrupole Strength Requirement

Section	Number	k1L (1/m)	Туре	Comment
S30CB13	QUAD1	-0.00774755171	QFD	existing
S30CB14	QUAD1	0.04872931718	QFD	existing
S30SY01	QUAD1	0.1780929071	QFM	
\$30\$Y01	QUAD2	-0.3419413497	QFM	
\$30\$Y01	QUAD3	0.1953288441	QFM	
S30SY02	QUAD1	0.03171381827	QFA	
S30SY02	QUAD2	-0.1585690913	QFA	
SPOSY01	QUAD1	0.2511493706	QFM	
SPOSY01	QUAD2	-0.1821261326	QFM	
SPOSY01	QUAD3	-0.1821261326	QFM	
SPOSY01	QUAD4	0.2511493706	QFM	
SPOSY02	QUAD1	-0.1347837276	QFM	
SPOSY02	QUAD2	-0.03685534341	QFD	
SPOSY02	QUAD3	0.09715206573	QFD	
SPOCB01	QUAD1	0.1786876362	QFM	
SPOCB01	QUAD2	-0.2076017569	QFM	
SPOCB01	QUAD3	0.07257501482	QFD or QFM	
SPOCB01	QUAD4	-0.02825329558	QFD or QFM	
SPOCB01	QUAD5	0.01008867385	QFD or QFM	
SPOCB02	QUAD1	-0.07665805293	QFD or QFM	
SPOCB02	QUAD2	0.1207990704	QFM	
SPOCB02	QUAD3	0.1280159078	QFM	
SPOCB02	QUAD4	-0.2306204632	QFM	
SPOCB02	QUAD5	0.0420334686	QFD or QFM	
SPOCL01	QUAD1	0.2511493706	QFM	
SPOCL01	QUAD2	-0.1821261326	QFM	
SPOCL01	QUAD3	-0.1821261326	QFM	
SPOCL01	QUAD4	0.2511493706	QFM	

Туре	max k1L @ 8 GeV
QFD	0.112
QFM	0.563
QFA	0.174

«Shopping List»:

- QFA: 2x
- QFD: 2x
- QFM: 22x (for P³: 13x)
- 1 Quad to compensate septum/dipol asymmetry
- Corrector Quads: x2
- Corrector Skew Quads: x2
- Sextupoles: To be studied (~6-8)

- In principle there is a good synergy with the extraction arm if the experiment is placed after SPOCB01 (this is valid for any other beam dynamics experiment)
- The current extraction for the P³ experiment is simpler because:
 - Has less beamline elements (quads, dipoles)
 - Keeps the main linac layout unchanged except for a dipole in S30CB16
 - Has a shorter extraction length since the dispersion needs to be closed in only one plane. This shifts the P³ location closer to the wall, away from the main beamline.
 - Uses existing elements or elements with existing design to build up the extraction.
- A compromised design (e.g. without resonant extraction) is nearly impossible without moving the girders afterwards.