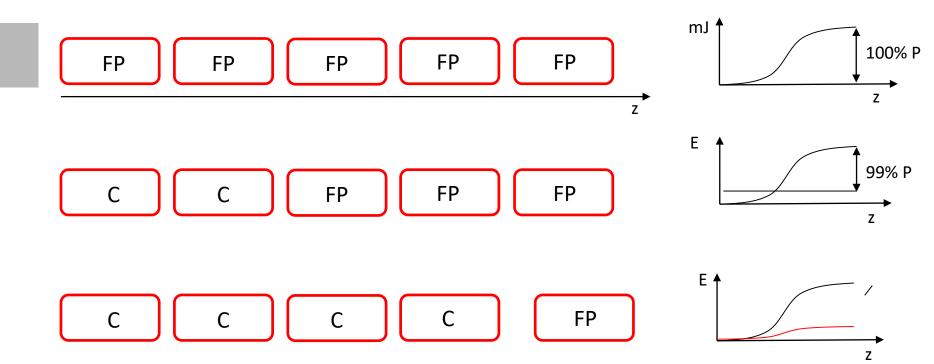


Marco Calvi :: ID group :: Paul Scherrer Institute

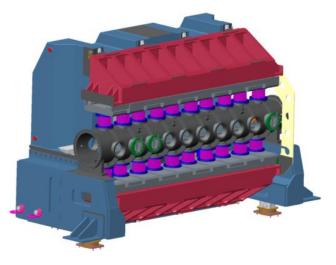

Porthos: ideas for the undulators

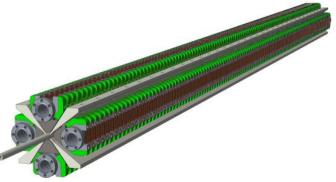
28.01.2022

Discusions with:

T.Schmidt, K.Zhang, E.Gluskin, I.Kesgin, S.Casalbuoni, J.Bahrdt, E.Rial, B.Shepherd, C.Calzolaio, C.Boffo, C.Geiselhart, M.Valleau

FP: Full Polarisation control C: Circular Polarisation

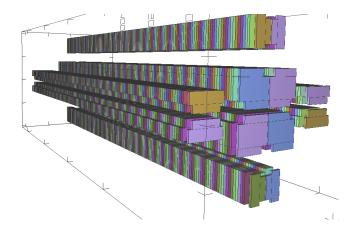


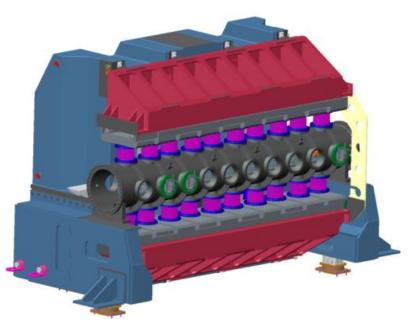

Is cryo-APPLE-X really the undulator we want for Porthos

- Cryo Apple X
 - -Full polarisation control, linear- α and elliptical
 - -Cryogenics: LN2 (77K)
 - -Controls: gap and shift drive system
 - -Synergies with SOLEIL & HZB (LEAPS-INNOV)

• SCAPE

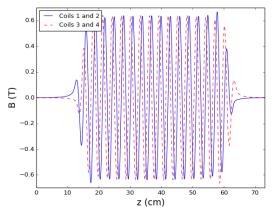
- -Polarisation control: LV, LH and elliptical
- -Cryogenics: LHe (4.2K)
- -Controls: power supply
- -Synergies with Argonne & EuXFEL

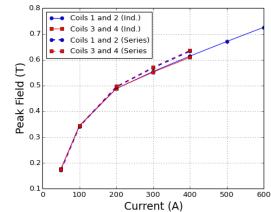




- Cryo Apple X... nobody is working on this very specific configuration at the moment
- On going efforts on a very similar version Apple II/III

-Asymmetry between LH & LV: LH > C > LV

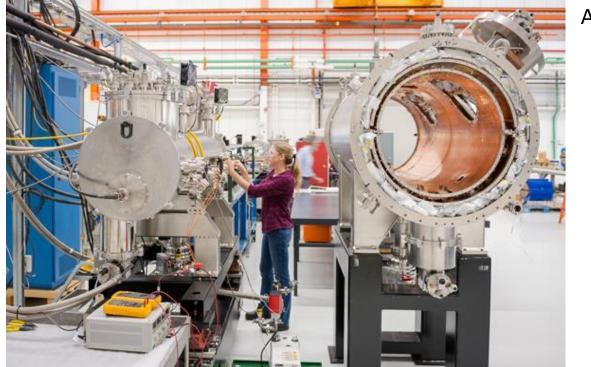


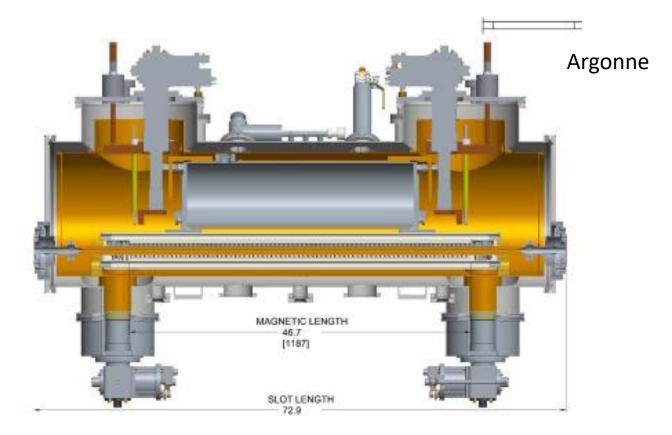

What is the state-of-the art worldwide for this technology?

SCAPE 0.5m long prototype magnet was built and

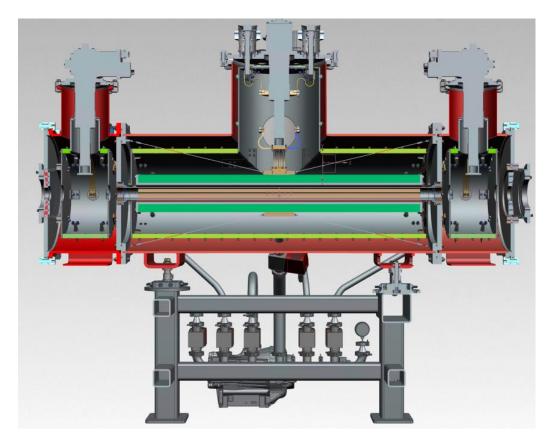
tested in LHe at Argonne:

- -Period length 30mm
- Magnetic gap 10mm
- On-axis field 0.7T

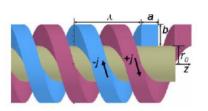


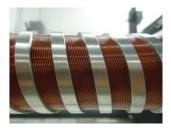

Cryostat with LHe using thermosyphon effect

Argonne

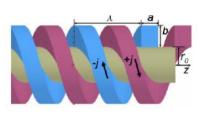


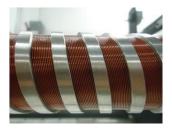
Cryostat with LHe using thermosyphon effect

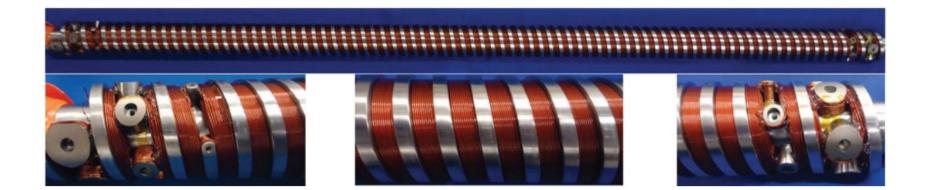

Conduction cooling cryostat



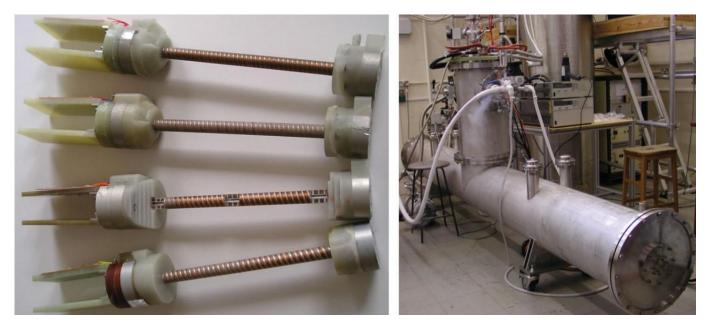
Fermilab/PSI

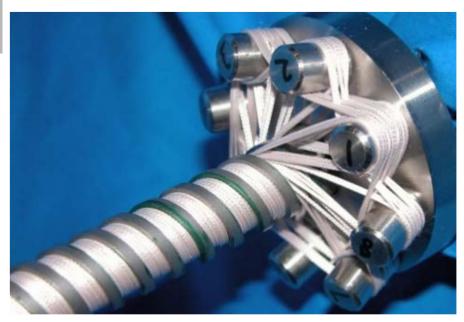

Argonne





Argonne




Daresbury lab Rutherford lab Argonne

future TeV-scale positron-electron linear collider (ILC) positron sources

End design

USA

UK

commissioned									
SCU	Conductor	Year	Laboratory	No. of	Period length	Magnetic	vacuum	Peak on-axis	Type
type	Conductor	Tear	Laboratory	periods	(mm)	bore/gap (mm)	bore/gap (mm)	field (T)	турс
Helical	NbTi wire	1973	Stanford U. [9]	160	32.3	9.8	8	V(H)=1.30	Device
		1974	Stanford U. [9]	160	32.3	12.5	10.2	-	Device
		1992	BINP [14]	8	24	20	18	V(H)=0.47	Device
		2002	Cornell U. [15]	64	2.4	1.5	0.9	V(H)=0.34	Prototype
		2005	Kurchatov Inst. [11]	6	28	11	-	V(H)=1.06	model
		2005-07	STFC [18]	20	14	6	-	V(H)=0.9	model
		2005-07	STFC [18]	25	12	6	-	V(H)=0.53	model
		2005-07	STFC [18]	25	12	6	-	V(H)=0.96	model
		2005-07	STFC [18]	42	11.5	6.35		V(H)=0.82	model
		2008	STFC [18]	150	11.5	6.35	5.23	V(H)=1.13	prototype
		2018	ANL [18]	38.5	31.5	31	8	V(H)=0.41	Device
		2007	ANL [18]	17	14	7.94	-	V(H)=0.9	model
	Nb ₃ Sn		Ohio State U.						
	wire	2012	[23]	17	14	8	-	V(H)=0.8	model
	MgB2 wire	2009	Ohio State U. [24]	17	14	8	-	V(H)=0.25	model
		1980	PARIS XI [27]	23	40	22	12	V=0.45	Device
Planar	NbTi wire	1990	BNL [50]	3	8.8	4.4	-	V=0.5	model
		1996	BNL [51]	23	8.8	4.4	3.8	V=0.51	prototype
		1998	KIT [29]	100	3.8	1	1	V=0.56	Device
		2003	KIT/ACCEL [32]	10	14	5	-	V=1.33	model
		2006	KIT/ACCEL [33]	100	14	8	7.4	V=0.38	Device
		2008	NSRRC [60]	20	15	5.6	-	V=1.45	model
		2011	NSRRC [61]	65	15	5.6	-	V=1.36	model
		2013	ANL [53]	20.5	16	9.5	7.2	V=0.8	Device
		2015	KIT/Noell [39]	11.5	20	8	-	V=1.2	model
		2015	ANL [55]	59.5	18	9.5	7.2	V=0.98	Device
		2016	SINAP [62]	5	16	8	-	V=0.93	model
		2016	KIT/Noell [35]	100.5	15	8	7	V=0.73	Device
		2016	BINP [86]	15	15.6	8	-	V=1.2	model
		2018	BINP [87]	40	15.6	8	-	V=1.2	model
		2018	ANL [57]	70	21	8		V=1.67	model
		2019	KIT/Noell [41]	74.5	20	8	7	V=1.18	Device
		2019	KIT [42]	24 or 12	17 or 34	6	-	V=1.3 or 2.3	model
		2019	STFC [47]	19	15.5	7.4	5.4	V=>0.8	Device
		2021	BINP [88]	119	15.6	8	-	V=1.2	model
		2021	SINAP [64]	50	16	10	7.5	V=0.62	Device
		2021	IHEP [65]	30	15	7	-	V=0.02 V=1.01	model
	Nb ₃ Sn	2018	LBNL [47]	73	19	8	-	V=1.83	model
	wire	2018	ANL [76]	28.5	19	9.5		V=1.85 V=1.2	model
	ReBCO tape	2021	KIT/Noell [78]		18	9.5		v=1.2	model
		2012	LANL [79]	3	14	3.2		V=0.77	model
		2014	ANL [82]	5	14	9.5		V=0.77	model
		2017	Kyoto U. [104]	5	10	4		V=0.85	model
	ReBCO bulk	2013		5	10	6	-	V=0.85 V=0.85	model
		2019	PSI [109]	10	10	4			model
		-	PSI [3]		-		-	V=1.54	
Variable	NbTi wire	2010	NSRRC [120]	4.5	24	6.8		V(H)=0.61	model
		2019 2020	ANL [126] BINP [121]	15	30	- 8	-	V(H)=0.6 V=1.0, H=0.7	model
		2020	BINP [121]	14	22	8	-	v=1.0, H=0.7	model

PAUL SCHERRER INSTITUT

In the table here on the right a summary of the last

40 years effort in

superconducting IDs

worldwide,

You can find it on indico within the review paper we recently prepared


under the request of the

SUST journal

Superconductor Science and Technology

Nume 32 Number 1 January 2019

Fastared article Marigan analysis agents fast saturations to manual the fast of the fast spectra definition of Course of Fastin

Which crucial properties do we need to verify with the prototype?

- K as a function of the polarisation
- Phase error (warm-cold)
- Polarisation quality (no surprise expected)
-

Cost/feasibility of a prototype (location, cryogenics etc.)

- Costs:
 - -Full scale prototype >2m, 3MCHF
 - -Short prototype <0.5m, 1MCHF
- Feasibility:
 - -Cryo Apple X: there is no design available, starting from Athos...!?!
 - -Cryo Appple II/III: collaboration with HZB and/or SOLEIL (Rial/Valleau)
 - -SCAPE: collaboration contract with Argonne or EuXFEL (Kesgin/Casalbuoni)
 - -Sc Helical: collaboration with Daresbury/Rutherford Lab (Shepherd)
- Location/Cryogenics: new cryo laboratory at PSI (Magnet& ID group)

1 SHIFT

• SCAPE can be upscaled to Full polarisation control