PAUL SCHERRER INSTITUT

Simona Bettoni with inputs from many people :: SwissFEL :: Paul Scherrer Institut

Ultra low emittance injector for Porthos

Brainstorming meeting – 28th January 2022

PAUL SCHERRER INSTITUT

Simona Bettoni with inputs from many people :: SwissFEL :: Paul Scherrer Institut

Ultra low emittance injector for Porthos Best performance

Brainstorming meeting – 28th January 2022

Goal

Present situation at SwissFEL and impact of an improved beam

Rf guns developments:

- Normal conducting C-band rf guns (INFN, PSI)
- Cryo-cooled rf guns (UCLA, SLAC, INFN)

Cathodes developments:

- Where we are
- Possible improvements

More on the the injector performance optimization

Measurements plans:

- What to measure
- How to measure
- Where to measure

Discussions

PAUL SCHERRER INSTITUT	Goal	
From the Thomas	s' previous	presentation
PAUL SCHERRER INSTITUT		

Porthos preproject III: Ultra-low emittance gun

• Main questions:

- How can we lower the emittance at the gun even further? RF technologies, configurations,...
 - What is the ultimate limit?
- What will be the benefit for Porthos (achievable photon energy, FEL power etc.)?
- What will be the benefit for the other SwissFEL beamlines?
- How to deal with an ultra-low emittance beam (compression scheme, laser heater etc.)
- Cost/feasibility of a test stand with prototype gun at PSI?
- Synergies with other projects:
 - I.FAST (Innovation Fostering in Accelerator Science and Technology)
 - EU Horizon 2020 programme May 2021 April 2025
 - PSI participates with a C-band gun prototype
- Brain storming leader: Simona Bettoni

Page 10

Present SwissFEL gun

RF design J. Y. Raguin, et al.

SwissFEL rf gun:

- S band, 2.5 Cell
- Final total beam energy 7.1 MeV
- Standing wave
- Maximum G = 100 MV/m (76 MV/m at extraction)
- Repetition frequency = 100 Hz
- Gun solenoid located at 0.3 m from the cathode

SwissFEL photocathode (R. Ganter):

- Cs₂Te grown in house
- Measured QE~1%
- Lifetime of few years: stable QE after an initial degradation (3 cathodes exchanged from 2016 till now)
- Measured intrinsic emittance~550 nm/mm

Where we are at SwissFEL (injector)

- SwissFEL design foresees a very small emittance for FEL photo-injectors
- The measurements reproduce what expected from the design at the highest charge (200 pC)
- Optimization in the machine mainly for 200 pC

Location	Measured (nm)	Design (nm)
LH (projected)	222 H-199 V	210
BC1 (slice)	140-150 H	145

Simulations: <u>https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.123403</u> Measurements: <u>https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.123.234801</u>

25 fs (after optimization)

Where we are at SwissFEL (undulator line(s))

~320

- Start-to-end simulations (Astra-Elegant-CSRTrack-Elegant-CSRTrack-Elegant) foresee less than 20% slice emittance increase from the injector to the Aramis entrance for 3 kA
- Short-term reproducibility of measured emittance is about 2%, and longer-term reproducibility is about 20%. With a careful optimization smaller values recovered.

https://conf.slac.stanford.edu/photocathode-physics-photoinjectors-2021/sites/ppp2021.conf.slac.stanford.edu/files/SessionC_Ganter_Presentation.pdf https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.123.234801

Different contributions to the emittance

The (small) final emittance is due to several contributions:

- Thermal/intrinsic $\varepsilon_{int} = \sigma_l \sqrt{\frac{2E_K}{3m_e c^2}}$, Cathode properties, and energy excess (low)

- Space charge $\varepsilon_{n,i}^{sc} = \frac{AQ}{8\sqrt{2\pi}\varepsilon_o c\sigma_i E_o \sin\phi_o} \mu_i(A)$; i=x or y. Energy gain of the beam (high)
- Rf emittance $\varepsilon_{n,i}^{rf} = \frac{eE_o}{2\sqrt{2}m_ec^2}k^2\sigma_i^2\sigma_z^2$ Gun frequency (low) and peak field (low)

The dominating contributions are typically the space charge and the intrinsic emittance

In the present SwissFEL case the intrinsic emittance contributes at 68% to the final emittance of the uncompressed beam

IFAST collaboration

Innovation Fostering in Accelerator Science and Technology

- Goal: investigate future accelerator technologies, particularly ones which are related to the size and performance of the machines
- Task force: 49 partners, including 17 companies, all from 14 countries
- Budget: 18.7 Meuro (120 kEuro+100 kEuro for PSI rf gun development and rf test)
- **Time frame**: from May 2021 to April 2025

PSI (rf section) is part of it

WP7: High brightness accelerators for light sources

Objectives

- Organise workshops on the technology enabling the design and construction of future ultra-low emittance rings
- Specify and design magnetically and mechanically a longitudinal variable field dipole magnet with transverse
 gradient, adapted to the ELETTRA storage ring upgrade, for reducing further the horizontal emittance
- Design of two different C-band (5.712 GHz) RF electron guns operating at very high gradient cathode peak field
- Build and test, at low and high RF power, two prototypes at different TRL of the X-band (12 GHz) accelerating structure designed for the CompactLight (XLS) project

Tasks

Task	Name	Task Leader
7.1	Coordination and communication	R. Bartolini (DESY)
7.2	Enabling technologies for ultra-low emittance rings	A. Mochihashi (KIT)
7.3	Variable Dipole for the upgrade of the ELETTRA storage ring	Y. Papaphilippou (CERN)
7.4	Very high gradient RF Guns operating in the C-band RF technology	D. Alesini (INFN)
7.5	CompactLight Prototype Accelerating Structures	G. D'Auria (Elettra)

- Design, realization and high power test of two different C-band (5.712 GHz) rf electron guns operating at peak field>160 MV/m:
- A Standing Wave (SW) gun at Frascati and a Travelling Wave (TW) gun at PSI
- **Comparison** of the performances
- Beam dynamics simulations to exploit the device potentialities

Responsibilities

SW GUN

- <u>INFN</u>: coordination, **design** and low power test **SW Gun**, **solenoid** design and procurement, **design of the module** to test the gun, providing the **RF circulator**.
- <u>COMEB</u>: mechanical construction SW gun, mechanical supports and movable screen with magnetic corrector.

- <u>PSI</u>: design, assembly, brazing and low-power characterization of the TW Gun, hosting and setting up the high-power test.
- VDL: Machining of the cups and couplers of the TW gun.

INFN and PSI: A comprehensive study and optimization of the **beam dynamics** aspects, to fully exploit the devices potentialities, will be led by

David Alesini- Task 7.4: Very high gradient RF Guns - Open Steering Committee 15-16 Nov 2021

IFAST collaboration: PSI

Engineering by T. G. Lucas

Parameter	Value	Unit
Frequency	5712	MHz
Phase advance	120	deg
Repetion rate	100	Hz
Group velocity	0.0079	
Q	10000	
R/Q	8268	W/m
Regular cell	10	
RF length	220	mm
Filling time	90	ns

Gradient at cathode	135	MV/m
Gun output energy	12.7	MeV

Gradient at cathode	200	MV/m
Gun output energy	13.9	MeV

Present status:

- Beam dynamics optimizations (see next slide)
- Dark current simulations performed
- Heating of the gun at such high gradient computed
- Multipacting simulated
- Tolerance studies evidenced the need for a different input coupler design (presently ongoing)

Optimized configurations:

gun solenoid close to the cathode, beam energy increased soon (space charge)

- Lower (135 MV/m) AND higher (200 MV/m) gradient
- Minimum emittance AND similar emittance with more peak current

M. Schaer PhD thesis

Table 5.1.: Comparison of the SwissFEL injector setup parameters and simulated beam quality between the proposed C-band standing- and traveling-wave gun designs, and the S-band SwissFEL reference design.

SwissFEL injector		Standin	g-Wave		c	band Traveli	ing-Wave	
		S-band	C-band	60 phase)° adv. ^d	120° phase adv.	High gradient ^e	Reduced therm. emit.
Bunch charge Q_b	[pC]	200	200	200	200	200	200	200
Norm. therm. emit. $\varepsilon_{x,th}/\sigma_{x,0}$	[µm/mm]	0.550	0.550	0.550	0.550	0.550	0.550	0.225
Laser transv. sigma $\sigma_{\times,0}$ *	[mm]	0.178	0.197	0.165	0.153	0.157	0.126	0.165
Thermal emittance $\varepsilon_{x,th}$	[µm]	0.098	0.108	0.091	0.084	0.086	0.069	0.037
Laser pulse FWHM Δt_0 *	[ps]	9.9	5.0	3.0	4.5	4.0	2.5	4.0
Gun frequency face	[GHz]	2.998	5.712	5.712	5.712	5.712	5.712	5.712
Phase advance per cell $\Delta \varphi_c$	[°]	(180)	(180)	60	60	120	120	120
Gun design gradient $E_{acc,0}$	[MV/m]	100	135	135	135	135	200	135
Gun phase $\Delta \varphi_{RF}$ b	[°]	-2.6	-10.5	-27	-25	-4.5	-6	-4.5
Extraction gradient $E_{c,0}$	[MV/m]	75.6	77.3	98.3	102.6	97.9	185.2	97.7
Solenoid field max _s $B_z(r = 0, s)$	[T]	0.2080	0.3546	0.4963	0.4964	0.4354	0.6994	0.4349
Solenoid max. field pos. s	[m]	0.300	0.149	0.097	0.097	0.097	0.097	0.097
1 st booster avg. grad. \tilde{E}_{bi1}	[MV/m]	13.8	17.3	12.0	12.6	9.8	14.8	9.4
1 st booster position s	[m]	3.3	2.090	2.429	2.615	2.745	2.563	2.639
Gun output energy Elin.gun	[MeV]	6.6	9.8	11.8	12.0	12.7	13.9	12.7
Peak current Ipeakinj	[A]	20.0	41.0	61.1	47.9	40.8	56.3	40.9
Bunch length $\sigma_{z,inj}$	[µm]	933	454	327	395	474	340	460
Proj. transv. emit. £x,a	[µm]	0.21	0.219	0.233	0.214	0.216	0.203	0.197
Non-thermal $\varepsilon_{x,other,n}$	[µm]	0.186	0.191	0.215	0.194	0.198	0.191	0.193
Mean slice emit. $\bar{\epsilon}_{x,n}$	[µm]	0.144	0.167	0.168	0.128	0.149	0.121	0.127
Non-thermal $\bar{\epsilon}_{x,other,n}$	[µm]	0.106	0.127	0.141	0.096	0.121	0.099	0.121
Mean mismatch ζ^{c}		1.14	1.03	1.07	1.13	1.09	1.07	1.11
Brightness B _{n,inj}	[TA/m ²]	965	1480	2170	2940	1840	3870	2520
Penalty function Ip		-1	-1.5	-2.0	-2.0	-1.4	-3.7	-1.8

Thermal emittance contributes to 71% (135 MV/m) and 74% (200 MV/m) to the final emittance

To be confirmed at the high field at the cathode (see later)

* Radial uniform distribution and temporal plateau distribution with Δt₀ = 0.5 ps raising time assumed.

^b With respect to maximum energy gain.

^c Average over $N_s = 20$ slices with constant charge, neglecting the $k_s = 2$ most external.

^d Left: high current solution. Right: low emittance solution.

* Beam dynamics computed with a reoptimized, stretched field map.

IFAST collaboration: INFN Frascati

Present status:

- 2.6 cells
- Electromagnetic design completed
- Gun solenoid and bucking coil design ongoing
- Dark current simulations performed

	Value	
Frequency [GHz]	5.712	
E _{cath} /√P _{diss} [MV/(m⋅MW ^{0.5})]	51	.4
Peak input power [MW]	18	23
Cathode field [MV/m]	160 180	
Cathode type	copper	
Rep. rate [Hz]	1000 100	
Quality factor	11900	
Filling time [ns]	166	
Coupling coefficient	3	
RF pulse length [ns]	300	
E _{surf} /E _{cath}	0.96	
Mod. Poy. Vect. [W/µm²]	2.5 3.1	
Pulsed heating [°C]	16 20	
Av.diss. Power [W]	2300 300	

IFAST collaboration: INFN Frascati

Courtesy of A. Giribono (INFN-Frascati)

Preliminary optimization at our parameters range: analytical solution and optimizer

• The C-band RF gun has been designed and simulated at LNF. It consists of a 2.6 cells and a single coil solenoid for the emittance compensation

Parameters		Units
Q	200	pC
RF gun peak field	180	MV/m
Solenoid field max position	0.191	m
First S-band structure position	1.7	m
Intrinsic emittance	0.550	μ m/mm
E	120	MeV
σ_E/E	0.05	%
$\epsilon_{n,rms}$	0.21	μ m
Mismatch	1.06	
σ_z	475	μ m
Ipeak	40	Α

Impact on Porthos and the other lines

The condition:

Courtesy of S. Reiche

is well fulfilled at lower energy, then not much benefits expected even further reducing the emittance.

Emittance at the cathodes: remind

Three step model:

- 1. Excitation: electrons are excited from the valence band to the conduction band
- 2. Transport: electrons move within the photocathode
- **3. Emission**: electrons with sufficient momentum perpendicular to the surface tunnel out into vacuum

Emittance at the cathode (intrinsic/thermal):

MTE: mean transverse energy

 E_{κ} : kinetic energy

 E_{κ} is defined as:

metals:
$$2E_K = \phi_l - \phi_w + \phi_{\text{Sch}}$$

semiconductors: $2E_K = \phi_l - E_g - E_a + \phi_{Sch}$, ϕ_l : laser energy $h_V = E_g$: energy gap E_a : electron affinity

The term takes in account the field at the extraction time and the roughness surface of the cathode:

$$\phi_{
m Sch} = \sqrt{rac{e^3}{4\piarepsilon_0}eta E_c},$$

This term varies the potential wall height that the electrons must overcome to be emitted vs the field at the cathode at the extraction (E_c) and the surface roughness (β)

Formulas from: https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.18.043401

Cathodes intrinsic emittance investigations at PSI

$$\varepsilon_{\rm int} = \sigma_l \sqrt{\frac{2E_K}{3m_ec^2}},$$

metals:
$$2E_K = \phi_l - \phi_w + \phi_{\text{Sch}}$$
,

semiconductors:
$$2E_K = \phi_l - E_g - E_a + \phi_{\text{Sch}}$$
,

We performed a measurement campaign at PSI on the Cu and Cs_2 Te intrinsic emittance (parameters used in the design)

For Cs₂Te we measured at 300 K, laser wavelength 262 nm about 550 nm/mm, which corresponds to MTE of about 155 meV, and QE of the order of 1 or few %

Interplay between the intrinsic emittance and the quantum efficiency (QE)
 Higher is the excess of energy with respect to Φ provided by the laser compared to the energy necessary to extract the electrons, higher are the QE and the intrinsic emittance.
 Both must be measured to characterize the quality of the performances of a cathode.

Intrinsic emittance and cathode field E_C for Cs₂Te

$$\varepsilon_{\text{int}} = \sigma_l \sqrt{\frac{2E_K}{3m_e c^2}},$$
semiconductors: $2E_K = \phi_l - E_g - E_a + \phi_{\text{Sch}},$

$$\phi_{\text{Sch}} = \sqrt{\frac{e^3}{4\pi\varepsilon_0}} \varepsilon_{\text{c}},$$

$$(0)$$

$$(0)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

Possible improvements: increase the Schottky term:

- The local field enhancement factor β is very sensitive to cathode surface roughness \rightarrow coevaporation of the cathode seems to be beneficial
- Lower the field at the cathode at the time of the extraction is, lower the intrinsic emittance is

Intrinsic emittance and cathode field E_{C}

Present S-band SwissFEL gun

- On-axis peak field: 100 MV/m
- Field at the extraction: 76 MV/m

Future possible TW C-band PSI gun (similarly for the INFN case)

- On-axis peak field: 135 (200) MV/m
- Field at the extraction: 98 (185) MV/m

About 25% increase of the intrinsic emittance contribution in the worst case \rightarrow about 20% increase of the final emittance. Something to be verified.

- Lower is beneficial → reduce the intrinsic emittance
 Higher is beneficial → minimize the space charge
 effect soon
- Possible solutions → deform cathode, unbalance the field of the different cells, ...
- Measurements to be done to estimate the field contribution on Cs₂Te cathode?

From Cu to Cs₂Te at SwissFEL

- The quality of the laser transverse profile σ_e is a fundamental parameter to optimize the emittance:

$$\sigma_e = \sigma_L x Q E \qquad \begin{cases} \sigma_L : \text{ laser profile} \\ \text{QE: quantum efficiency map where the cathode is illuminated} \\ x \text{ convolution} \end{cases}$$

A transverse shaping (TS) technique (energy hungry)
 may be used to improve the laser transverse
 profile uniformity

- Present situation with Cs₂Te:
- QE orders of magnitude larger for Cs₂Te vs for Cu
- Similar values for the intrinsic emittance
- More laser energy allows to apply transverse shaping

https://conf.slac.stanford.edu/photocathode-physics-photoinjectors-2021/sites/ppp2021.conf.slac.stanford.edu/files/SessionC_Ganter_Presentation.pdf Page 21

Other cathode materials

Main investigator: Cornell University, DESY PITZ

Many studies are going on at several labs on cathodes "efficiently" emitting in green, blue, or even red/IR (in this case at the present very low QE<1e-4)

- Reduction of the complexity, cost of the laser
- More laser intensity available at the cathode (reduced number of harmonics conversions) → better laser shaping → better emittance
- Reduction of the damaging of the optics components
- Some considered materials (mainly semiconductors) are Cs₃Sb, Rb-K-Sb, CsK₂Sb, GaAs

NOTE:

Many of the measurements are performed at a very low gradient, so also the excess of energy due to the effect of the electric field on the cathode must be considered.

Quantum efficiency

At 532 nm a fresh cathode starts from 5-10% QE, which degrades quickly to of the order of few per mille, where it seems to stabilize (no long term measurements found, and not at high gradient)

As a reference at SwissFEL the charge extracted/day:

Q_D = 2 bunch*200 pC*100 Hz*60 s*60 m*24 h corresponds to about 3.5 mC

With also Porthos $Q_D = 5.25 \text{ mC}$

https://www.osti.gov/servlets/purl/1483870, https://aip.scitation.org/doi/pdf/10.1063/1.3652758

Better value of Cs_2 Te (by 37%) in UV but in green

Quantum efficiency

- Layer of Cs₂Te to make the material more robust (increase the lifetime): increased by a factor 5 deposing Cs2Te on top of GaAs
- Measurements at higher gradient in preparation
- Not measurements of the intrinsic emittance done for this case

https://conf.slac.stanford.edu/photocathode-physics-photoinjectors-2021/sites/ppp2021.conf.slac.stanford.edu/files/SessionA_Biswas_Presentation.pptx https://aip.scitation.org/doi/10.1063/5.0026839 https://accelconf.web.cern.ch/p07/PAPERS/TUPMS020.PDF

Cold cathodes

Cornell University

Three step model

- **1. Excitation**: electrons are excited from the valence band to the conduction band
- 2. Transport: electrons move within the photocathode
- **3. Emission**: electrons with sufficient momentum perpendicular to the surface tunnel out into vacuum

During 2 the electrons undergo to scattering with the material lattice

The equivalent temperature (i.e. intrinsic emittance) of the electron bunch increases

Cool down the cathode mitigates the intrinsic emittance increase

Experimental verification (Cs₃Sb)

About 25% intrinsic emittance reduction at 90 K vs at 300 K

No measurements done at higher accelerating fields (10's to 100 MV/m)

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.18.113401

A speculation during the "brainstorming"

The beam emittance is given by the position spread, the angle or velocity spread and their combination:

$$arepsilon_{ ext{RMS}} = \sqrt{\langle x^2
angle \langle x'^2
angle - \langle x \cdot x'
angle^2}$$

x: position distribution of e-

x': angle distribution of e-

A possibility to reduce the emittance is to intervene on the angle distribution

HOW TO REDUCE THE EMITTANCE AT THE EXTRACTION: PRINCIPLE

- 1. In the direction **normal** to the surface they undergo to **inelastic** scattering
- 2. In the direction tangential to the surface they undergo to elastic scattering

Use the journey to the extraction to "clean" the velocity spread and then reduce the emittance

FROM THE PRINCIPLE TO REALITY: THE UNIDIMENSIONAL CONDUCTORS?

Materials whose electrical conductivity is high only along one direction:

 $l_{\scriptscriptstyle \parallel} {\gtrsim} d_{\scriptscriptstyle \parallel}$ $l_{\scriptscriptstyle \perp} {\ll} d_{\scriptscriptstyle \perp}$

- $I_{\parallel}(\perp)$ is the electron mean free path
- $d_{\parallel(\perp)}$ is the interatomic distance along the 1d axis

Platinum compounds, zirconium tritellurite

POSSIBLE COLLABORATION?

Informal and preliminary discussions with someone in EMPA, INFN Milan, INFN Frascati, ENEA to make this possibility something realistic and usable

At each iteration with the lattice the e-velocity in x direction is reduced

Determine the thickness as a function of the mean free path of the material

Cryo-cooled C-band rf guns

STATUS (Cu rf gun)

- At 45 K gradient of 500 MV/m experimentally achieved, but limitations due to dark current at 300 MV/m (cathode field)
- At 27 K peak design reaching 250 MV/m

EXPECTATIONS (250 MV/m case)

With the latter design 40 nm at 200 pC with 10 ps beam pulse length expected

Intermediate summary on emittance optimization

GREEN (BLUE/RED) CATHODE: better for the laser (shaping, cost, optics lifetime)

- Intrinsic emittance using green laser similar or better than Cs₂Te using UV laser
- Uniformity of the QE of the order of few % (up to 5)
- Roughness of the cathode surface of the order of 1-2 nm rms
- Strong vacuum activity and even discharges in case the electric field at the cathode is increased to something of the order of more than few 10s MV/m (PITZ)
- QE degrades with vacuum
- No tests at gradient > 30-40 MV/m (not promising at these values already-PITZ)

0.05 • 300K	
U 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.05	rms

POSSIBLE IMPROVEMENTS:

Cool down the cathode: experimentally demonstrated at the expenses of the QE until now **Cryo-cooled** gun: up to 500 MV/m demonstrated, but 300 MV/m presently maintainable

PROBABLY NOT MATURE ENOUGH YET TO BE INSTALLED IN A USER FACILITY

PROPOSALS:

	5
õ /	2,

- Tune the Cs₂Te growing procedure to stay more at the threshold to decrease the intrinsic emittance partially sacrificing QE
- More investigations on the co-evaporation of the cathode, and check the optimum for the cathode field at the extraction
- "Cleaning" layer or orienting of the Cs₂Te photocathode to reduce the intrinsic emittance?

PAUL SCHERRER INSTITUT

Another character in the story: energy spread

Emittance and energy spread (σ_{v}) Courtesy of S. Reiche

Intra-Beam Scattering

[Huang LCLS-TN-02-8]

Diffusion Process:

- Energy spread grows as z^{1/2}
- Energy spread scales as $\epsilon_n^{-3/4}$

Microbunch Instability

$$\frac{d}{dz}\sigma_{\gamma}(k) = \frac{I}{I_{A}}\frac{2}{k\sigma_{r}^{2}}\left[1 - \frac{k\sigma_{r}}{\gamma}K_{1}\left(\frac{k\sigma_{r}}{\gamma}\right)\right]b(k)$$

[Huang & Wu SLAC-PUB-11597]

Almost linear growth:

- 1D Limit for $k\sigma_r/\gamma \ll 1$ (σ_r drops out)
- LH chicane enhances certain high frequencies in the shot noise bunching spectrum, depending on beam emittance

Measurement of uncorrelated energy spread of uncompressed beam

[in preparation for publication]

First bunch compressor scales energy spread by compression factor and «freezes» it in

Emittance and FEL performance

Courtesy of S. Reiche

Coherence Condition

Smaller emittances are needed to reach shorter wavelength

Energy Spread Condition

With parameters at 1 Å (I = 2 kA and σ_E =12 keV) both sides are about equal (For compression scaling : C = 1)

- Lower emittance at gun will increase energy spread stronger than FEL parameter ρ
- Bunch needs to be decompressed (C<1) to preserve energy spread condition

Benefit of smaller emittance is partially negated for SwissFEL if initial energy spread in the injector is not reduced

This counter action of the energy spread has an even stronger impact for wavelength shorter than 1 Angstrom

Start-to-end simulations of the final gun to be installed in SwissFEL would be useful (see spare slide)

Crucial parameters to be measured

Several parameters must be verified before so invasively modify the SwissFEL injector:

- QE and QE map
- Energy spread (slice and projected?)
- Beam emittance (slice and projected?)
- Cathode lifetime (in case we will change cathode material), uniformity, and response time: not treated here

- Large quantum efficiency permits to have a better laser transverse shaping (beneficial for the emittance) and use less laser intensity (minimize the optics damages and reduce the operation cost)
- Semiconductors ~1% up to 10% (only for a limited time)

QE map

- Growing chamber equipped at PSI. Responsible: R. Ganter
- For long term data (in case we go away from Cs₂Te): where the other measurements are performed

https://conf.slac.stanford.edu/photocathode-physics-photoinjectors-2021/sites/ppp2021.conf.slac.stanford.edu/files/SessionC_Ganter_Presentation.pdf

Measurement on the uncompressed beam, which may be enough

Streaking device (streaker):

The streaking can be done:

- 1. Using an rf transverse deflector: method known and routinely used
- 2. Introducing dispersion to an energy chirped beam: method known and usable
- 3. Using the transverse wakefield: to be studied at low energy (quadrupole may be an issue)
- 4. THz deflector: to be dimensioned and tested before it may be used

Beam emittance measurement

Measured ideally after at least one accelerating cavity (E~100 MeV), where the emittance is "frozen"

Pepper-pot: https://indico.cern.ch/event/664166/contributions/2795590/attachments/1661378/2661868/Pepperpot.pdf and https://www.researchgate.net/publication/313875930_STATUS_OF_THE_LOW-ENERGY_EMITTANCE_MEASUREMENT_SIMULATIONS_FOR_THE_SPARC_PROJECT/figures?lo=1 and https://www.hindawi.com/journals/stni/2016/4697247/

OTR-based: https://wiki.jlab.org/ciswiki/images/b/bd/Gitter_1992_603.pdf

Option 1: Athos branch

Pros:

- Hardware and technical system from SwissFEL usable
- HERO laser in the area
- C-band klystron relatively "in the area" (SATCB01)
- All the (uncompressed-projected-slice) beam measurements probably possible

Cons:

- Limited beam time: not compatible with users' photon delivery to Athos and HERO project
- Possible space constraints
- Harmonics conversion or UV transport to be built

Option 2: Porthos branch

Pros:

- Hardware and technical system from SwissFEL Porthos usable (time schedule?)
- C-band klystron relatively "in the area"
- All the (uncompressed-projected) beam measurements probably possible

Cons:

- Limited beam time: not compatible with the HERO project
- Laser transport to be built
- Possible space constraints
- Harmonics conversion or UV transport to be built

Option 3: test facility in WLHA

Pros:

- Basically unlimited beam time
- Possible synergies with other projects for Porthos and not only
- Other studies coming in the future

Cons:

- Presently a rf test stand is foreseen
- To be designed a new facility: most probably gun, 1-2 rf stations to accelerate
- To be organized all to build and operate a test facility: timing, laser, controls, magnets, diagnostics, vacuum, safety, ...

Schematic layout

To perform all the beam measurements the elements to be present are shown On top of course all the systems: vacuum, synchronization, controls, ...

Total length 24 (27) m, final energy 72 (132) MeV with 1 (2) C-band cavities Length optimization to be done according to the HW possibilities

Courtesy of RF section

HV klystron modulator is routinely running on C-band PSI loads (max power 50 MW)
Closure of the bunker: documents under preparation to get permission from BAG
Waveguide network: C-BOC and most of the RF components already at PSI

The bunker will be closed approximately at **19 m** from the wall to ensure that he bunker meets safety standards with respect to emergency exits.

The bunker already has all water and electrical facilities installed

Test facility in WLHA: possible synergies

- New acceleration schemes: among them for Porthos:
 WP R. Ischebeck
- THz diagnostics: way to diagnose the longitudinal beam properties in the facility itself for **Porthos**
- Cathode studies (green cathode, but not only): interest from PSD (laser group)

- Adaptive feed-backs of the laser: interest from PSD (laser group)
- Electron diffraction: some possible interest from the **BIO** division (J. Abrahams)?
- Gun test stand: INFN Frascati (iFast) and other projects studying new guns
- Detectors tests: some interest from PSD (B. Schmitt)?
- In general beamtime requests difficult to have granted at SwissFEL because sensibly impacting on the photon delivery: several

Conclusions Discussion/comments/ideas

Conclusions Discussion/comments/ideas

- SwissFEL presently already provides a very high brightness beam, but a further improvement may have a positive impact in Porthos, somehow in Aramis, and marginal in Athos
- Improvements relatively no risk and compatible with the Porthos schedule:
 Cathode roughness: co-evaporation
 High gradient rf guns: iFAST
- Longer term possible improvements:

 Green cathodes to further improve the laser
 Coating on a Cs₂Te cathode to reduce the intrinsic emittance

Where to test?

- △ Is one of the SwissFEL branches an option?
- △ Is a new facility in WLHA a real possibility?
- △ Install in SwissFEL after doing the rf power tests in WLHA?

Do we want to further optimize?

Wir schaffen Wissen – heute für morgen

My thanks go to all the people who contributed in different ways to these slides discussing, providing slides, doing some calculations, ...

- PSI RF section
 T. G. Lucas, M. Schaer, R. Zennaro,
 M. Pedrozzi, P. Craievich, J. Y.
 Raguin, W. Tron
- INFN Frascati David Alesini, Anna Giribono
- PSI cathodes
 - R. Ganter
- PSI BD group S. Reiche, E. Prat
- PSI diagnostics group R. Ischebeck
- **PSI laser group** A. Trisorio, C. Vicario, M. Huppert,

A. Dax

Conclusions Discussion/comments/ideas

- SwissFEL presently already provides a very high brightness beam, but a further improvement may have a positive impact in Porthos, somehow in Aramis, and marginal in Athos
- Improvements relatively no risk and compatible with the Porthos schedule:
 Cathode roughness: co-evaporation
 High gradient rf guns: iFAST
- Longer term possible improvements:

 Green cathodes to further improve the laser
 Coating on a Cs₂Te cathode to reduce the intrinsic emittance

Where to test?

- △ Is one of the SwissFEL branches an option?
- △ Is a new facility in WLHA a real possibility?
- △ Install in SwissFEL after doing the rf power tests in WLHA?

Do we want to further optimize?

• Peak current = 61.1 A

- 60 deg phase advance / cell
- Max. accelerating gradient on-axis 135 MV/m
- Evaluation at z = 12.62 m, E = 139.4 MeV

Peak current = 40.8 A

•

- 120 deg phase advance / cell
- Max. gradient on-axis 135 MV/m
- Evaluation at z = 12.75m, E = 128.5 MeV

Courtesy of M. Schaer (C-band case)

- Peak current = 56.3 A
- 120 deg phase advance / cell
- Max. gradient on-axis 200 MV/m
- Evaluation at z = 12.56m, E = 150.9 MeV

Possible candidates to be determined

DOE **Data** Explorer

U.S. Department of Energy Office of Scientific and Technical Information

Pt(NCI)₂

The structure is one-dimensional and consists of one Pt(NCl)2 ribbon oriented in the (0, 0, 1) direction

https://www.osti.gov/dataexplorer/search/

Beam emittance: considerations

For all the measurements:

- Consideration for the streaker element as for the DE spread measurement
- Better to perform the measurement when the beam emittance is "frozen", i.e. at beam energy of the order of 100 MeV at least

No phase space reconstructed, but tomography may be applied to have it

Method consolidated and routinely used in several facilities and also at SwissFEL

- Quad scan
- Pepper-pot

OTR

- Phase space reconstructed
- Less components required, less space necessary

Several quadrupoles and space required

- Method used in other facilities. It may be validated at SwissFEL

- Less hardware and space required
- Some optimizations to be done to minimize errors
 - Less used method in other facilities. It must be tested at SwissFEL