SUSY-QCD Corrections to Pseudoscalar Higgs Production via Gluon Fusion

Lukas Fritz E. Bagnaschi, S. Liebler, M. Mühlleitner, D. Nguyen, M. Spira

LTP Seminar 5. Juli 2022

Introduction

MSSM has extended Higgs sector

 $h, H, \mathbf{A}, H^{\pm}$

 \rightarrow Find SUSY-QCD corrections to the production cross section numerically

Production at the LHC via

Motivation

- gluon fusion important production channel at the LHC, together with $gg \rightarrow b\bar{b}A$
- (pure) QCD corrections are large (10 30%)

[Spira '93] [Harlander et al. '09] [Anastasiou, Melnikov '02]

- Can be reused for relevant decay channels $A
ightarrow \gamma\gamma, gg$

Susy QCD

Supersymmetry \rightarrow every particle gets a (heavy) super-partner

New Interactions:

4

Diagrams

5

Existing Results

- Non decoupling for $M_{\rm SUSY}
 ightarrow \infty$
- Absorb into effective Yukawa coupling
- Resums large $an\beta$ contributions
- includes all leading powers of $\alpha_s\mu aneta$ [Carena,

Garcia, Nierste, Wagner '00][Guasch, Häflinger,

Spira '03]

$$\begin{split} \Delta_q &= \frac{C_F}{2} \frac{\alpha_s}{\pi} m_{\tilde{g}} \mu \; r_q \; I(m_{\tilde{q}_1}, m_{\tilde{q}_2}, m_{\tilde{g}}) + \Delta_q^{\text{elw.}} \\ r_b &= \tan\!\beta \qquad r_t = \cot\!\beta \end{split}$$

Analytic results exist as asymptotic expansion valid upto

$$\mathcal{O}\left(\frac{M_A^2}{M^2}\right) \quad \& \quad \mathcal{O}\left(\frac{m_t^2}{M^2}\right) \qquad \mathcal{O}\left(\frac{m_b^2}{M_A^2}\right) \quad \& \quad \mathcal{O}\left(\frac{m_b}{M}\right)$$

[Harlander, Hofmann '06]

[Degrassi, Vita, Slavich '11]

Calculation

γ_5 in Dimensional Regularization

 γ_5 inconsistent in $D{-}\mathsf{dim}{:}$

$$2(D-4)\operatorname{tr}(\gamma_5\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 0$$

• Larin scheme

•
$$\overline{\psi}\gamma_5\psi = \frac{i}{4!}\epsilon_{\mu\nu\rho\sigma}\overline{\psi}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\psi$$

• $\epsilon^{\mu_1\nu_1\rho_1\sigma_1}\epsilon_{\mu_2\nu_2\rho_2\sigma_2} = -\det \begin{cases} g_{\mu_2}^{\mu_1} & g_{\nu_2}^{\mu_1} & g_{\nu_2}^{\mu_1} & g_{\nu_1}^{\mu_2} & g_{\nu_2}^{\mu_1} \\ g_{\mu_1}^{\mu_1} & g_{\nu_2}^{\nu_1} & g_{\nu_2}^{\nu_1} & g_{\nu_2}^{\mu_2} & g_{\nu_2}^{\mu_2} \\ g_{\mu_2}^{\mu_2} & g_{\nu_2}^{\nu_2} & g_{\nu_2}^{\mu_2} & g_{\sigma_2}^{\mu_2} \\ g_{\mu_2}^{\mu_2} & g_{\nu_2}^{\nu_2} & g_{\sigma_2}^{\mu_2} & g_{\sigma_2}^{\mu_2} \end{cases}$

• Only *D*-dimensional objects

[Larin '93]

• Breitenlohner Maison scheme: $\{\gamma_5, \gamma^{\mu}\} \neq 0$

[Breitenlohner, Maison '77]

Kreimer scheme: Noncyclic trace [Kreimer '94]

Adler Bardeen theorem

Adler Bardeen Theorem: no anomalous corrections at NLO Peccei Quinn symmetry: $\partial_{\mu}j^{\mu}_{PQ} = -\delta \mathcal{L} + \frac{\alpha_s}{2\pi}F^{\mu\nu}\tilde{F}_{\mu\nu}$

 \Rightarrow No corrections beyond Δ_b and Δ_t for $m_A^2 \ll m_Q^2 \ll M_{
m SUSY}^2$

Numerical Integration

After Feynman Parametrization:

$$I = \int_0^1 d^d x \quad \frac{f(x)}{N^{n+2\varepsilon}(x)}$$

upto 5 parameters

parametrized, such that N(x) is quadratic polynomial in Feynmanparameters Example:

$$N(x) = M_A^2 (x_1 - 1) x_2 (1 - x_3) (x_3 + x_1 (x_3 + x_4 - 1) (x_5 - 1)) x_5 + M_{\tilde{g}}^2 x_1 x_5 + M_Q^2 (x_5 - x_1 x_5) + M_{\tilde{q}_{\alpha}}^2 (x_1 - 1) x_1 (x_5 - 1)$$

To get finite and divergent part expand in ε Divergent integrals can arise from factors $x^{-1+\varepsilon}\Rightarrow$ Endpoint subtraction

$$\int_{0}^{1} dx \quad x^{-1+\varepsilon}f(x) = \int_{0}^{1} dx \quad \underbrace{x^{-1+\varepsilon}(f(x) - f(0))}_{\text{regular in x}} + \underbrace{\int_{0}^{1} dx \quad x^{-1+\varepsilon}f(0)}_{=\frac{f(0)}{\varepsilon}}$$

Iteration 8: 80000000	integrand evaluations so far
[1] 107.257 +- 87.4996	chisq 2.60227 (7 df)
[2] 52.3746 +- 81.1029	chisq 4.40932 (7 df)
[3] 59011.6 +- 53836.4	chisq 7.80152 (7 df)
[4] 81290.5 +- 140535	chisq 5.79475 (7 df)
Iteration 9. 90000000	integrand evaluations so far
[1] 106.833 + 82.401	Chisq 2.60247 (8 df)
[2] 16.4968 +- 75.2997	chisq 5.82753 (8 df)
[3] 43936.9 +- 53032.7	chisq 10.4471 (8 df)
[4] 57839.8 +- 139436	chisq 7.58229 (8 df)
Iteration 10: 1000000	00 integrand evaluations so far
[1] 72.2666 +- 79.8743	chisq 5.51663 (9 df)
[2] 24.5327 +- 69.712	chisq 5.90723 (9 df)
[3] 37029.3 +- 52329.3	chisq 11.0909 (9 df)
[4] 34889.4 +- 118027	chisq 7.67784 (9 df)

Thresholds

after expansion in ε

$$I = \int_0^1 d^d x \ \frac{g(x) + h(x)\ln(N(x))}{N^n(x)}$$

What happens for N(x) = 0? Microcausality: Masses from propagators are given small imaginary part

Usually $\lambda \to 0$, but for numerical integration we set λ sufficiently small but finite.

Thresholds

Integration by parts

$$\frac{\nabla N}{N^n} = \frac{1}{n-1} \vec{\nabla} \frac{1}{N^{n-1}}$$

Example in one dimension:

$$N(x) = ax^{2} + bx + c$$

$$\Rightarrow 1 = \underbrace{\frac{1}{4ac - b^{2}}}_{\text{constant}} \left(\underbrace{4a}_{p_{0}} \cdot N(x) \underbrace{-(2ax + b)}_{p_{1}} \cdot \partial_{x} N(x) \right)$$

Iteration 8: 80000000 integra	nd evaluations so far	
[1] -0.419694 +- 0.000978278	chisq 4.17753 (7 df)	
[2] 0.0699153 +- 0.000950702	chisq 4.28112 (7 df)	
[3] 1.972 +- 0.050616 chisq !	5.16887 (7 df)	
[4] -1.3137 +- 0.0504296	chisq 6.73128 (7 df)	
Iteration 9: 90000000 integra	nd evaluations so far	
[1] -0.420145 +- 0.00071454	chisq 4.63387 (8 df)	
[2] 0.0696467 +- 0.000687736	chisq 4.44859 (8 df)	
[3] 1.98024 +- 0.0339793	chisq 5.21711 (8 df)	
[4] -1.3158 +- 0.0342964	chisq 6.73449 (8 df)	
Iteration 10: 100000000 integrand evaluations so far		
[1] -0.420004 + 0.00057225	chisq 4.74287 (9 df)	
[2] 0.0694324 +- 0.00054715	chisq 4.71313 (9 df)	
[3] 1.97658 +- 0.02691	chisq 5.24823 (9 df)	
[4] -1.33638 +- 0.0284265	chisq 7.88515 (9 df)	

Richardson Extrapolation

e

- Stability for larger values of regulator λ
- Extrapolate from stable integration regions
- Assumes polynomial behavior for small λ

$$R_n(G)(\lambda) = \frac{t^n R_{n-1}(G)(\lambda) - R_{n-1}(G)(t^n \lambda)}{t^n - 1} = G(0) + \mathcal{O}(\lambda^n)$$

$$R_0(G)(\lambda) = G(\lambda)$$

.g. $R_3(G)(\lambda) = \frac{64G(\lambda)}{21} - \frac{8}{3}G(2\lambda) + \frac{2}{3}G(4\lambda) - \frac{1}{21}G(8\lambda) \approx G(0)$

Richardson Extrapolation

Does not work near threshold, because $G(\lambda) \sim \sqrt{\lambda}$

Results

$$C_{Q,SQCD}, \tan\beta = 40$$

M_A [GeV]

$$\begin{split} m_{\tilde{b}_1} &= 1459 \, {\rm GeV} & m_{\tilde{t}_1} &= 1353 \, {\rm GeV} \\ m_{\tilde{b}_2} &= 1531 \, {\rm GeV} & m_{\tilde{t}_2} &= 1650 \, {\rm GeV} \end{split}$$

$\overline{\mathcal{C}}_{Q,SQCD}, \tan\beta = 10$

1959 Call

$$m_{\tilde{b}_1} = 1466 \, \mathrm{GeV}$$

 $m_{\tilde{b}_2} = 1504 \, \mathrm{GeV}$

$$m_{\tilde{t}_1} = 1353 \,\mathrm{GeV}$$

 $m_{\tilde{t}_2} = 1650 \,\mathrm{GeV}$

Crosssections

Conclusion

- Existing approximations valid for M_A well below the virtual squark thresholds
- Dominant contributions can be absorbed in effective coupling (→ electroweak and NNLO corrections)
- SUSY-QCD remainders significant for large M_A

\diamond Thank you for your attention \diamond