ETH zürich

Towards epoxy resins for cryogenic applications

CHART workshop June 9th, 2022

Pascal Studer Prof. Theo Tervoort
Laboratory for Soft Materials, ETH Zürich

Superconducting electromagnets

- Stresses in epoxy insulation
 - Thermal stresses
 - Lorentz forces
- Cracking / Delamination / Yielding → Quenching of magnet
- Goal: Develop a new epoxy resin
 - Longer pot-life than current resins
 - Good fracture resistance at 4 K (tested at 77 K)
 - Solid at room temperature
- Develop an understanding
 - Relation between toughness and structure
 - Adhesive properties

Previous Research (André Brem et al.)

- 4 resin systems
 - Elastic modulus

Yield in compression

- Fracture toughness
 - Large differences, even at 77K

■ Room temperature
■ Liquid Nitrogen

Network design parameters

$$F = 4$$

$$ightharpoonup R = 3:2$$

Functionality of hardener Ratio DGEBA:Aliphatic amine

$$F \in \{4, 3, 2\}$$

 $R \in \{1:0, 5:4, 9:8\}$

Example: F=4, R=3:2

1st hypothesis: Nanodomains

Are there nanodomains and are they responsible for improved properties?

Monomers and reaction mechanism

Table 1Monomers used for synthesizing the epoxy resins. F denotes the functionality of the component. EEW denotes the epoxide equivalent weight (g/mol).

Name	Abbreviation	F	EEW
bisphenol A diglycidyl ether meta phenylene diamine 4,4'-diaminodiphenylmethane n-octylamine n-butylamine	DGEBA MPD DDM OA BA	2 4 4 2 2	172 27.0 49.6 64.6 36.6
tert-octylamine 2-heptylamine	t-OA 2-HA	2	64.6 57.6
z-neptylanine	Z-ПA	2	57.0

Sample overview

- ➤ Addition of Butylamine, Octylamine or 2-Heptylamine → Improved toughness at 77 K!
- > Due to nanophase separation?

First result: Improved pot-life by sterical hindrance

 \triangleright Methyl group in β-position \rightarrow sterical effect!

Significantly longer pot-life with2-Heptylamine or tert-Octylamine

Figure 3: Time dependence of the complex viscosity of asprepared mixtures stored at $22.5\,^{\circ}\text{C}$ for specified amounts of time. The measurements were done at $22.5\,^{\circ}\text{C}$.

DMTA – No proof for nanophase separation

- > Tougher systems seem to have less broad β-relaxation
- ➤ No other relaxations detected inconclusive with respect to nanophase separation

WAXS scattering – Influence of sidechain-type

- ➤ Peak I: 1.25 Å⁻¹ / 5 Å
 - Amorphous halo (VdW interactions)
- ➤ Peak II: 0.4 Å⁻¹ / 15 Å
 - Also visible in Base system, ascribed to Type-II chains in the network (Lovell, 1989)
 - Not enough evidence for nanophase separation

DMTA – Extraction of crosslink density

> From rubber elasticity theory:

$$M_C^{-1} \propto \left(\frac{G_R}{T}\right) \frac{1}{g\rho R}$$
 $\rho_C = M_C^{-1} \rho$ $\rho_C \propto$

Variables:

M_C
 Molecular weight between crosslinks
 g
 Factor accounting for crosslink mobility

ightharpoonup g=1 Immobile crosslinks $ightharpoonup g=(f_c-2)/f_c$ Mobile crosslinks

 \triangleright ρ density [g/cm3]

R Ideal gas constant

> G_R Rubbery modulus

Temperature

ρ_C Crosslink density

fit from data

[g/mol]

[N/mm2]

[mol/cm3]

[K]

Dependence of KIC at 77K on measured crosslink density

g=1

g=(fc-2)/fc

- > The correlation is very weak
- > Crosslink density as reason for improved toughness is also not confirmed

New hypothesis for improved properties

Example: F=4, R=3:2

1st hypothesis: Nanodomains

No proof

- 1. No additional relaxation
- 2. Very similar WAXS pattern

2nd hypothesis: Large scale inhomogeneities

→ SAXS / USAXS measurements planned

Dependence of E' at -140°C on measured density

Extraction of moduli

- ➤ Lower modulus with more aliphatic side-chains
 - Polyethylene-like chains decrease cohesive energy density

Grüneisens 1st rule (Isotropic van der Waals materials)

$$E_{0K} = 3(1 - v) \frac{mn}{4} \frac{E_{\text{coh}}}{V_{0K}}$$

Conclusions

- New, tough epoxy resin formulation with long pot-life
 - Long pot-life
 - Low viscosity
 - Lower elastic modulus
 - Thermal expansion yet to be measured
- Structure-property relationship for toughness not yet established

