

Swiss Accelerator Research and Technology

WireDev Advanced Niobium-Tin superconductors for next generation particle colliders

Gianmarco BOVONE, Florin BUTA, Francesco LONARDO, and Carmine SENATORE

Department of Quantum Matter Physics, University of Geneva, Switzerland

Simon HOPKINS, and Amalia BALLARINO

CERN, Switzerland

Outline

• Motivation of the work

- Challenges and perspectives in the development of accelerator magnets based on Nb₃Sn conductors for a Future Circular Collider
- Towards the ultimate performance of Nb₃Sn
 - The internal oxidation process to increase the critical current and possible strategies to further enhance B_{c2}
 - Basic material science, development of novel wire architectures and test of manufacturing processes scalable for industrial production
- Summary and outlook

Targets for a future 100 TeV hadron collider Dipoles at B = 16 T based on Nb₃Sn with a non-Cu J_c(4.2K, 16 T) = 1'500 A/mm²

Doubling the operating current density brings a reduction of the superconductor area to one third

The most promising route to fill the performance gap is the Internal Oxidation

Parrell et al., AIP Conf. Proc. <u>711</u> (2004) 369 Boutboul et al., IEEE TASC <u>19</u> (2009) 2564 Xu et al., APL <u>104</u> (2014) 082602

Strategies to increase the in-field critical current density = to enhance vortex pinning at high field

Idea from Benz (1968) of an internal oxidation to form fine precipitates in Nb to impede the Nb₃Sn grain growth Benz, Trans. Metall. Soc. AIME, <u>242</u> (1968) 1067-1070

Use of a Nb-alloy containing Zr or Hf: Zr and Hf have stronger affinity to oxygen than Nb

Oxygen supply added to the composite: oxidation of Zr (Hf) and formation of nano-ZrO₂ (HfO₂)

The Ohio State University

The first evidence of average grain size reduced down to ~ 50 nm (vs ~ 100 nm in regular wires) Xu et al., APL <u>104</u> (2014) 082602 Xu et al., Adv. Mat. 27 (2015) 1346

Strategies to increase the in-field critical current density = to enhance vortex pinning at high field

Idea from Benz (1968) of an internal oxidation to form fine precipitates in Nb to impede the Nb₃Sn grain growth Benz, Trans. Metall. Soc. AIME, <u>242</u> (1968) 1067-1070

Use of a Nb-alloy containing Zr or Hf: Zr and Hf have stronger affinity to oxygen than Nb

Oxygen supply added to the composite: oxidation of Zr (Hf) and formation of nano- ZrO_2 (HfO₂)

The Ohio State University

The first evidence of average grain size reduced down to ~ 50 nm (vs ~ 100 nm in regular wires) Xu et al., APL <u>104</u> (2014) 082602 Xu et al., Adv. Mat. <u>27</u> (2015) 1346

How is made a high-performance Nb₃Sn wire

The defined goals of <u>WireDev</u> in CHART-2

- Obtaining and optimizing a method for refining grains in Nb₃Sn and enhancing its in-field critical current density
- Producing sufficiently long (unit lengths <u>of the order of 20 m</u>) prototype Nb₃Sn wires, matching the FCC targets for critical current density with a process that can be adopted for an industrial production

The three steps to get there:

- 1. Monofilamentary wires: Material study Test of various alloys and oxides (and their combinations)
- 2. Development of test-bed subelements Deformation, filaments arrangement and oxygen source configurations
- 3. Development of multifilamentary wires

Internal Oxidation of monofilamentary wires

LONARDO

Magnetic field [T]

Internal Oxidation of <u>monofilamentary</u> wires

Critical fields from R(B) performed at LNCMI Grenoble under fields up to 33 T

The combined presence of Ta and Zr further increases the upper critical field up to ~29 T , i.e. to higher values than obtained for Nb7.5Ta

The result is technologically relevant but the reason behind is still unclear:

- Is the presence of Zr and/or O affecting the diffusion of Sn?
- Is the non-oxidized Zr contributing with Ta to increasing B_{c2}?
- Are the ZrO₂ nanoparticles playing a role?

X-ray Absorption Spectroscopy (XAS) experiments are planned in August 2022 at the PHOENIX X07MA/B beamline of PSI to shed light on the mechanism Scientific contact: Thomas HUTHWELKER

Internal Oxidation of test-bed subelements

12-filament wires with an internal Sn source

Two possible configurations for the oxygen source

Nb-alloy	Oxide configuration
Nb-7.5wt%Ta (REF.)	None
Nb-7.5wt%Ta-1wt%Zr	None
	SnO ₂ Core
Nb-7.5wt%Ta-2wt%Hf	None
	SnO ₂ Core
	SnO ₂ Annular

Two commercial ternary alloy were tested with 1wt%Zr and 2wt%Hf

Internal Oxidation of <u>test-bed subelements</u> 12-filament wires with an internal Sn source

Three to possible configurations for the oxygen source

SnO₂ Groove Grooves machined in the Nb-alloy filaments and filled with SnO₂ powder

HT: 550°C x 100h + 650°C x 200h

Reference wire w/o oxidation

Average grain size ~ 110 nm

Internal Oxidation of test-bed subelements

12-filament wires with an internal Sn source

Nb-7.5Ta-2Hf + SnO₂ Core

Average grain size ~ 47 nm

Nb-7.5Ta-2Hf + SnO₂ <u>Annular</u>

Average grain size ~ 45 nm

Nb-7.5Ta-2Hf + SnO₂ Groove very first experiment

Average grain size ~ 50 nm

Is the oxygen source configuration making any difference? Scaling of the pinning force

Wire w/o oxidation, $b_{max} = 0.2 \Rightarrow$ grain boundary pinning

Wire with SnO₂ Core, $b_{max} = 0.24 \Rightarrow$ mixed pinning, grain boundary and point pinning Wire with SnO₂ Annular, $b_{max} = 0.33 \Rightarrow$ mixed pinning, point pinning dominant

Layer J_c determined from transport measurements

Equivalent non-Cu J_c for a RRP wire, considering 60% of Nb₃Sn in the non-Cu area

High field experiments (up to 33 T) are planned in July 2022 at LNCMI-Grenoble

B_{c2} values are achieved also in the test-bed subelements

Towards the development of multifilamentary wires From test-bed to fully-structured subelements

192 Cu/Nb-alloy filaments surrounding 121 Cu filaments First billet based on Nb-7.5Ta to validate the layout and the following ones to test solutions for including the oxide powder

- Billet preparation and assembly at UNIGE
- e-beam welding at CERN sealing of the billet

- Hot Isostatic Pressing (HIP) at Deloro HTM, Bienne, CH densification of the billet
- Hot extrusion at a
- , INGWERK GmbH, Berlin, D indirect extrusion, Ø 84 mm
- **Unipress Extrusion, Celestynów, PL hydrostatic extrusion, Ø 70 mm**

- Drawing of large diameter bars at Zwahlen et Mayr SA, Aigle, CH
 - Long drilling of bars at E. Grütter AG, Roggwil, CH to insert the Sn core

Towards the development of multifilamentary wires An overview of the entire process

final wire diameter

Summary and outlook

The goal of obtaining accelerator dipoles at 16 T for a Future Circular Collider is driving the development of Nb₃Sn towards its ultimate performance

- it is possible to produce routinely material with enhanced J_c by refining the grain size with the internal oxidation
- The combined presence of Ta and Zr or Hf leads to B_{c2} values that exceed by up to 1.3 T the values obtained at 4.2 K on standard Ta-doped Nb₃Sn
- practical solutions to implement this technology in industrial wires are being developed

In view of the phase 3 of CHART the scope of the activity could further expand with concrete goals and improving the Nb₃Sn R&D capability at UNIGE

- Developing multifilamentary Nb₃Sn wires with enhanced critical current density and able to withstand the mechanical loads imposed during the magnet assembly and by the electromagnetic forces during operation
- Aiming at the fabrication of sufficiently long (unit lengths <u>of the order of 100 m</u>) demonstration Nb₃Sn wires, as required for validation of the results in short Rutherford cables and model coils

Thank you for the attention !

Carmine SENATORE carmine.senatore@unige.ch http://supra.unige.ch

Acknowledgments: This work was done under the auspices of CHART (Swiss Accelerator Research and Technology Collaboration, <u>https://chart.ch</u>). Financial support was provided by the Swiss National Science Foundation (Grant No. 200021_184940), by the European Organization for Nuclear Research (CERN), Memorandum of Understanding for the FCC Study, Addendum FCC-GOV-CC-0175 (KE 4663/ATS).

