
Legacy of 

Scientific code

Dr. Anthony Lim, 

Dr. Martyn Gigg, Dr Stephen Smith



• Introduction

• Failing fast

• Iterative improvements

• Useful tools

• Conclusion

Contents



• Was asked to work on the quasielasticbayes

package

• The original code is written in Fortran

• Has in recent years been made available as a 

Python package

• Has an associated publication from 1992

• The Fortran code has not changed for many years 

and has Fortran 90 extension

Introduction



• The code is designed to give the fit 

parameters for quasi elastic data

• Background

• Offset

• Elastic peak

• Inelastic features

• The results are accepted as 

being correct

• The Bayesian part gives the 

likelihood for 0, 1, 2, 3 inelastic 

features (e.g. Lorentzian)

Introduction



• The code is designed to give the fit 

parameters for quasi elastic data

• Background

• Offset

• Elastic peak

• Inelastic features

• The results are accepted as 

being correct

• The Bayesian part gives the 

likelihood for 0, 1, 2, 3 inelastic 

features (e.g. Lorentzian)

Introduction

The most likely is 2 Lorentzians



• No one understands how the results 

are generated

• The paper focuses on verifying 

results

• The author is no longer 

available to discuss the method

• Written in the style of Fortran 70

• The code is difficult to compile 

(modern compilers do not work)

• Gives different answers on Linux 

and Windows

So, what's the problem?



• Legacy scientific code is normally not:

• Documented

• Maintainable

• Readable

• Commented

• It is also possible that:

• The author has left

• No one knows how it works – just that its right

Legacy code



• Snippet of some Fortran code

• Whats the function name mean?

• What are the variables (e.g. WX)?

• Why does it close a file that has not been opened?

• What values are changed when exiting the 

subroutine?

Fail fast



• Kept as much the same as possible

• Converted Fortran arrays to numpy arrays

• Add some comments from understanding of 

the code

Fail fast



Fail fast



• Sometimes had –1's in the for loops or inputs 

that assumed counting started at 1

• This became very confusing to know when 

the indices needed shifting

Fail Fast



• Sometimes had –1's in the for loops or inputs 

that assumed counting started at 1

• This became very confusing to know when 

the indices needed shifting

• Best to "cut losses" and use a method that 

prevents the problem

Fail Fast



• Kept as much the same as possible 

compared to Fortran

• Created a set of classes to make Python 

look like Fortran (hide the –1's):

• Vector class (vec)

• 2D matrix

• A wrapper for ranges get_range

• Added more comments

• Compared outputs with Fortran

Iterative improvements



• Globals led to very long argument list

Iterative improvements



• Globals led to very long argument list

• Created a class to hold the globals

Iterative improvements



• Globals led to very long argument list

• Created a class to hold the globals

• Fortran IO is very different to Python's

Iterative improvements



• Globals led to very long argument list

• Created a class to hold the globals

• Fortran IO is very different to Python's

• Wrote a class to behave like Fortran IO

Iterative improvements



• Globals led to very long argument list

• Created a class to hold the globals

• Fortran IO is very different to Python's

• Wrote a class to behave like Fortran IO

• Fortran can silently convert matrices into 

vectors

Iterative improvements



• Globals led to very long argument list

• Created a class to hold the globals

• Fortran IO is very different to Python's

• Wrote a class to behave like Fortran IO

• Fortran can silently convert matrices into 

vectors

• Re-worked matrix class to be a vector 

under the hood

Iterative improvements



• Globals led to very long argument list

• Created a class to hold the globals

• Fortran IO is very different to Python's

• Wrote a class to behave like Fortran IO

• Fortran can silently convert matrices into 

vectors

• Re-worked matrix class to be a vector 

under the hood

• Fortran will silently convert between complex 

and real arrays

Iterative improvements



• Globals led to very long argument list

• Created a class to hold the globals

• Fortran IO is very different to Python's

• Wrote a class to behave like Fortran IO

• Fortran can silently convert matrices into 

vectors

• Re-worked matrix class to be a vector 

under the hood

• Fortran will silently convert between complex 

and real arrays

• Wrote flatten and compress methods to 

replicate behaviour

Iterative improvements



• Once I had a good understanding, could use 

better names

• Didn't delete old functions

• Added a deprecation warning decorator

• Call the new function

• Code is much easier to read and follow

Iterative improvements



• A more complex example

• What are some of the variables (e.g. XBMIN)

• Lots of globals

• What are the subroutines XGINIT and 

BINBLR

• Continues and go to's

Iterative improvements



• A more complex example

• What are some of the variables (e.g. XBMIN)

• Lots of globals

• What are the subroutines XGINIT 

and BINBLR

• Continues and go to's

Iterative improvements



• Good profiling tools

• Easy to use

Useful tools: Cython



• Good profiling tools

• tottime is the total time, excluding function 

calls

• Number of calls

Useful tools: Cython



• Good profiling tools

• Python library that allows pre-compiled 

pseudo-c code

• Can give feedback about where in the code 

is slow (Python)

• Relatively easy to learn 

Useful tools: Cython



• Can be difficult and time consuming working on legacy code

• When working with legacy code its important to be open to failing fast

• Iterative improvements are a great way to translate the code

• Easier if minimal things change

• Gain more understanding from context

• Know whats coming

• Needed understanding of this code, solve the compiler problems and understand the OS dependence

• Cython can be used to help profile and speed up Python code

Conclusion



• https://github.com/mantidproject/quasielasticbayes

Links

https://github.com/mantidproject/quasielasticbayes


@STFC_matters Science and Technology Facilities CouncilScience and Technology Facilities Council


