
Ophyd v2
CALLUM FORRESTER, TOM COBB, DAN ALLEN, TOM CASWELL

Contents
Ophyd

Malcolm

Ophyd v2

The Bluesky Collaboration

Problems and Solutions

Current Status

Ophyd
Module in the Bluesky architecture

Hardware abstraction layer focused on data acquisition

Malcolm
Fly scanning service

Provides map of hardware

Hierarchy of “devices”

Configuration UI

Ophyd v2
Drop-in replacement for Ophyd as-is

Collaboration between
◦ NSLS-II

◦ Diamond Light Source

Incorporates lessons learnt from Ophyd and Malcolm

Key Design Concerns
◦ Modularity

◦ Clear Migration Path

◦ Separation of logic and I/O

◦ Easy to implement hardware triggered scanning solutions

The Bluesky Collaboration
Analysis-driven Data Acquisition
Libraries

Started at NSLS-II

Technical Steering Committee

The Bluesky Collaboration
Now in use at multiple facilities

◦ NSLS-II (at least some use at all 29 beamlines,
primary data acquisition at most beamlines)

◦ LCLS (widespread use) and SSRL (one or two
instruments)

◦ APS (scaling up from a couple beamlines to
dozens)

◦ ALS (at least one beamline, also scaling up)

◦ Diamond (piloting, has made significant
development investments, see Dom’s poster)

◦ Australian Synchrotron (several beamlines)

◦ Canadian Light Source (at least one)

◦ PSI (evaluating, not yet committed to
adoption)

◦ Pohang Light Source II

◦ BESSY II

◦ Various academic labs

✗ Problems and ✓ Solutions
HOW WE GOT HERE

✗ Problem: Scattered Scan Logic at
Diamond

Fly scans in Malcolm (Python)

Outer step scans in GDA (Java)

Duplication

Shared state over network interface

Too complicated

✓ Solution: Bluesky as Unifying
Framework

Lightweight clean architecture

Python3 based

Event model for data

Ecosystem of complementary modules

Proven at NSLS-II

Adopted by several other facilities

Our prototypes were leading to a similar architecture

✗ Problem: Ophyd Codebase
Nearly 10000 lines of code

Many lessons learnt

Hard to maintain backward compatibility

Must maintain legacy code

✓ Solution: Brand new Package
Following Bluesky Protocols

Rids us of legacy and allows us to make new technology/design choices

Backward compatibility is provided by the ability to run Ophyd v1 and Ophyd v2 devices
alongside one another

Agile migration path is also provided as this allows porting devices as-needed

Written in modern Python 3/asyncio with appropriate QA controls
◦ Type hints

◦ CI for formatting and mypy

✗ Problem: Malcolm Device Tree is
Too Abstract

✓ Solution: Bluesky Protocols
Readable, Movable, Flyable…

Compatible with Run Engine, so can write plans

Easy to understand but flexible

✗ Problem: I/O Code Coupled to
Logic in Ophyd

Readability/maintainability

Hard to deal with multiple configurations for devices,
commonly use multiple inheritance

Like Malcolm, leaves us with a tree of devices with scattered
logic which is hard to understand

✓ Solution: Separate Objects to
Handle I/O
Comms objects

◦ Collections of signals

◦ Async

Composition over
inheritance

◦ Better way to handle
multiple device
configurations

Asyncio with aioca for
EPICS comms

✗ Problem: PVs and Pre/Suffixes
are Hard Coded

class CamBase(ADBase):
...
Shared among all cams and plugins
array_counter = ADCpt(SignalWithRBV, "ArrayCounter")
array_rate = ADCpt(EpicsSignalRO, "ArrayRate_RBV")
asyn_io = ADCpt(EpicsSignal, "AsynIO")
nd_attributes_file = ADCpt(EpicsSignal, "NDAttributesFile", string=True)
pool_alloc_buffers = ADCpt(EpicsSignalRO, "PoolAllocBuffers")
pool_free_buffers = ADCpt(EpicsSignalRO, "PoolFreeBuffers")
pool_max_buffers = ADCpt(EpicsSignalRO, "PoolMaxBuffers")
pool_max_mem = ADCpt(EpicsSignalRO, "PoolMaxMem")
pool_used_buffers = ADCpt(EpicsSignalRO, "PoolUsedBuffers")
pool_used_mem = ADCpt(EpicsSignalRO, "PoolUsedMem")
port_name = ADCpt(EpicsSignalRO, "PortName_RBV", string=True)

✓ Solution: Separate Definitions
and Option for PVI
New component: SignalCollector, to provide signal definitions

Multiple implementations:
◦ Hard-coded

◦ Naming convention

◦ PVI

◦ Databases

Current Status
Early alpha

Scan modelling library: https://github.com/dls-
controls/scanspec

Currently being merged into Ophyd repository,
ophyd.v2 package

Issue currently open to update build system:
https://github.com/bluesky/ophyd/issues/1059

Device repositories:
◦ https://github.com/bluesky/ophyd-tango-devices

◦ https://github.com/bluesky/ophyd-epics-devices

https://github.com/dls-controls/scanspec
https://github.com/bluesky/ophyd/issues/1059
https://github.com/bluesky/ophyd-tango-devices
https://github.com/bluesky/ophyd-epics-devices

Summary
Ophyd v2 developed to replace Ophyd and Malcolm

Incorporates lessons learned from Ophyd v2 (NSLS-II) and fly scanning functionality from
Malcolm (Diamond)

Can run Ophyd v1 and Ophyd v2 devices concurrently

Clear migration path

Jointly developed by the two facilities, bi-weekly call

Also regular representation from:
◦ PSI

◦ Kyle Sunden & Blaise Thomson, UW Madison

https://github.com/bluesky/ophyd/issues/1059

https://github.com/bluesky/ophyd/issues/1059

