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Module in the Bluesky architecture

Hardware abstraction layer focused on data acquisition
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Malcolm
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Ophyd v2

Drop-in replacement for Ophyd as-is

Collaboration between

o NSLS-II N j /J
o
/, 4

o Diamond Light Source

=)

Incorporates lessons learnt from Ophyd and Malcolm

Key Design Concerns
o Modularity
o Clear Migration Path
o Separation of logic and I/O
o Easy to implement hardware triggered scanning solutions



The Bluesky Collaboration

Analysis-driven Data Acquisition
Libraries

Started at NSLS-II

Technical Steering Committee

Experimental procedure <«
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The Bluesky Collaboration

Prompt feedback

Now in use at mUltlpI@faC”ltleS Experimental procedure € — — — = = = — — - — - — - —— - - -
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X Problems and v Solutions

HOW WE GOT HERE




X Problem: Scattered Scan Logic at &@1uesky
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v Solution: Bluesky as Unifying @ivesky

Framework

Lightweight clean architecture

Python3 based

Event model for data

Ecosystem of complementary modules
Proven at NSLS-II

Adopted by several other facilities

Our prototypes were leading to a similar architecture
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X Problem: Ophyd Codebase

Nearly 10000 lines of code

Many lessons learnt

Hard to maintain backward compatibility

Must maintain legacy code

Contributions to master, excluding merge commits and bot accounts
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v Solution: Brand new Package @lvesky

Following Bluesky Protocols

Rids us of legacy and allows us to make new technology/design choices

Backward compatibility is provided by the ability to run Ophyd vl and Ophyd v2 devices
alongside one another

Agile migration path is also provided as this allows porting devices as-needed

Written in modern Python 3/asyncio with appropriate QA controls
> Type hints
o ClI for formatting and mypy




. . d@Dluesk
X Problem: Malcolm Device Tree is e

Too Abstract
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V' Solution: Bluesky Protocols

Readable, Movable, Flyable...

Compatible with Run Engine, so can write plans

Easy to understand but flexible




X Problem: |/O Code Coupled to &@vesky

Logic in Ophya

Readability/maintainability BasePand
Hard to deal with multiple configurations for devices,
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v/ Solution: Separate Objects to &@>ivesky

Handle /O
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X Problem: PVs and Pre/Suffixes
are Hard Coded

class CamBase(ADBase):

# Shared among all cams and plugins

array_counter = ADCpt(SignalWithRBV, "ArrayCounter")

array_rate = ADCpt(EpicsSignalRO, "ArrayRate_RBV")

asyn_io = ADCpt(EpicsSignal, "AsynlO")

nd_attributes_file = ADCpt(EpicsSignal, "NDAttributesFile", string=True)
pool_alloc_buffers = ADCpt(EpicsSignalRO, "PoolAllocBuffers")
pool_free_buffers = ADCpt(EpicsSignalRO, "PoolFreeBuffers")
pool_max_buffers = ADCpt(EpicsSignalRO, "PoolMaxBuffers")
pool_max_mem = ADCpt(EpicsSignalRO, "PoolMaxMem™")
pool_used_buffers = ADCpt(EpicsSignalRO, "PoolUsedBuffers")
pool_used_mem = ADCpt(EpicsSignalRO, "PoolUsedMem™")
port_name = ADCpt(EpicsSignalRO, "PortName_RBV", string=True)




V' Solution: Separate Definitions @lvesky

and Option for PVI

New component: SignalCollector, to provide signal definitions

Multiple implementations:
° Hard-coded

° Naming convention
° PVI
> Databases
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Current Status

Early alpha

. . . S~ v \\*»7,
Scan modelling library: https://github.com/dls- —_ T -
controls/scanspec == L
Currently being merged into Ophyd repository, S

ophyd.v2 package 9 \ . =

\\—»,,>,. 0
Issue currently open to update build system:
https://github.com/bluesky/ophyd/issues/1059 O e N

Device repositories: | \\\

o https://github.com/bluesky/ophyd-tango-devices

o https://github.com/bluesky/ophyd-epics-devices



https://github.com/dls-controls/scanspec
https://github.com/bluesky/ophyd/issues/1059
https://github.com/bluesky/ophyd-tango-devices
https://github.com/bluesky/ophyd-epics-devices
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Summary

Ophyd v2 developed to replace Ophyd and Malcolm

Incorporates lessons learned from Ophyd v2 (NSLS-11) and fly scanning functionality from
Malcolm (Diamond)

Can run Ophyd v1 and Ophyd v2 devices concurrently
Clear migration path
Jointly developed by the two facilities, bi-weekly call

Also regular representation from:
o PS|
o Kyle Sunden & Blaise Thomson, UW Madison

https://github.com/bluesky/ophyd/issues/1059



https://github.com/bluesky/ophyd/issues/1059

