Ophyd v2

CALLUM FORRESTER, TOM COBB, DAN ALLEN, TOM CASWELL

"Qlueskg

Contents

Ophyd

Malcolm

Ophyd v2

The Bluesky Collaboration
Problems and Solutions

Current Status

Ophyd

oluesky

Module in the Bluesky architecture

Hardware abstraction layer focused on data acquisition

-l0C-C TS-EA-IQC-01 Top

eI

- |§u.oouo +

| B oooomm J |

;||_0.0000 + |
[] [

1.000 sSTOP|

More | 1.000

fosmesd

- ”Eo.oooo +

] _oooomm J |

- |J0.0000 + |
[o

1.000 sTOP|

More | 1.000

stats ||_| Terminall

Ll
L’ |§o.oooo +

ADSIM |

] u
1.000 sTOP|

@ luesky

Malcolm

Fly scanning service 69 Mlcomis L7.5-0g754: x

— c @

PrOV|des ma p Of ha rdwa re x BLAOP-ML-BRICK-01 BL4OPMLSCANOT v layout v BRICK v layout v

c . (@ Health AUTO LAYOUT
Hierarchy of “devices” @ s 00®

(1) Layout

(i) Design default

COnﬁguration UI (i) Exports TRAJ

A Modified ® pmac

BLAYP-ML-BRICK-
() Label Brick with X and A Samp O1TRAS stagea

@ Points Scanned 94 /94 pmac

s
o DISABLE STATUS BL49P-MO-STAGE-0T:A
> port 1 m—
BL49P-ML-BRICK-

Save 01:STATUS

Move C S1

Servo Frequency

Write Profile

> EXECUTE PROFILE stagex

— N= x f < £ oo

pmac
> ABORT PROFILE
BL4SP-ML-BRICK- -
01:.cs1 BL49P-MO-STAGE-01:X

Q)lueskg
Ophyd v2

Drop-in replacement for Ophyd as-is

Collaboration between

o NSLS-II N j /J
o
/, 4

o Diamond Light Source

=)

Incorporates lessons learnt from Ophyd and Malcolm

Key Design Concerns
o Modularity
o Clear Migration Path
o Separation of logic and I/O
o Easy to implement hardware triggered scanning solutions

The Bluesky Collaboration

Analysis-driven Data Acquisition
Libraries

Started at NSLS-II

Technical Steering Committee

Experimental procedure <«

Prompt feedback

1

\/

Run Engine () [vn-¢noine) —————> “Documents” ——————>

A

\/
Python abstractions

of hardware (o) 5°1v9) D suitcases) Access saved data
A / (o gfelia:?roker)
Set value Read value Jv L_/V
 / Persistent storage (:J
Control layer (e.g. EPICS) (Ordinary files on disk, .
A a Database, and/or the Clou:)\ Interactive
> data analysis
rd ° - “‘ s
Large detectors jupyter (S s ;
A » write directly to storage kﬁ
Hardware -+ *

(e.g. motors, detectors)

Streaming visualization,
processing, adaptive and
autonomous interfaces

) T
Serialization

’ cam
=

The Bluesky Collaboration

Prompt feedback

Now in use at mUltlpI@faC”ltleS Experimental procedure € — — — = = = — — - — - — - —— - - -
o NSLS-II (at least some use at all 29 beamlines, A (“) I
primary data acquisition at most beamlines) > Streaming ',s Jlization
g i FUN-ENQINE) s €6 R | visualization,
o LCLS (widespread use) and SSRL (one or two Run Engine (?b}:“*ﬁ) Documents processing, adaptive and
instruments) autonomous interfaces
o APS (scaling up from a couple beamlines to v
dozens) . N
)) Python abstractions Serialization
o ALS (at least one beamline, also scaling up) of hardware ((2) 5°"49) (€ svitcases) Access saved data
. . . . e databrok
> Diamond (piloting, has made significant 1 l - (@ gatabroker)
development investments, see Dom’s poster) Set value Read value /'
o Australian Synchrotron (several beamlines) \/ (OP;TSiStef']It 5t°fag?k Q
. . Control layer (e.g. EPICS rdinary rileés on disk,
o Canadian Light Source (at least one) y (A g) a Database, and/or the c|°u:)\ Interactive
. : dat lysi
o PSI (evaluating, not yet committed to 7 | GoaanaysiE
adoptlon) v P 7 Large detectors Jupyter ﬁ;ﬁ H
: ite directly to st ' & .
> Pohang Light Source Il Hardware -~ Ccleciyiosiorage N ’ _
cam
> BESSY Il (e.g. motors, detectors) !

o Various academic labs

X Problems and v Solutions

HOW WE GOT HERE

X Problem: Scattered Scan Logic at &@1uesky

Diamond

caput trajectory

Fly scans in Malcolm (Python) prSy [Maleoln | EPICS j
| | ' | N
Outer step scans in GDA (Java Fo cofigueeQ oL it immer : <
| | et
I | — ! 1 ““h-..l
Duplication [copt oter ' Sl
I : :)l
. ! E runQ T ~ caput trajectory E
Shared state over network interface - = ! ,
: : ll | c.axput 'tra&e_c‘toﬁf M‘:
. | ! I
Too complicated] coput outer |_
: I : -
I |I - caput trajectory
1! -
-
]

mﬁ() r [l
I
I
_

=

v Solution: Bluesky as Unifying @ivesky

Framework

Lightweight clean architecture

Python3 based

Event model for data

Ecosystem of complementary modules
Proven at NSLS-II

Adopted by several other facilities

Our prototypes were leading to a similar architecture

‘Qlueskg
X Problem: Ophyd Codebase

Nearly 10000 lines of code

Many lessons learnt

Hard to maintain backward compatibility

Must maintain legacy code

Contributions to master, excluding merge commits and bot accounts

60
40

20 &t 1y - i 8

2015 2016 2017 2018 2019 2020 2021 2022

v Solution: Brand new Package @lvesky

Following Bluesky Protocols

Rids us of legacy and allows us to make new technology/design choices

Backward compatibility is provided by the ability to run Ophyd vl and Ophyd v2 devices
alongside one another

Agile migration path is also provided as this allows porting devices as-needed

Written in modern Python 3/asyncio with appropriate QA controls
> Type hints
o ClI for formatting and mypy

. . d@Dluesk
X Problem: Malcolm Device Tree is e

Too Abstract
=)

-

produces
Controller F---F=-------- --> Block
’7 ~
Parts Methods Attrbutes

Q)Iueskg

V' Solution: Bluesky Protocols

Readable, Movable, Flyable...

Compatible with Run Engine, so can write plans

Easy to understand but flexible

X Problem: |/O Code Coupled to &@vesky

Logic in Ophya

Readability/maintainability BasePand
Hard to deal with multiple configurations for devices,
commonly use multiple inheritance kmkﬁ)x
comp, e
Like Malcolm, leaves us with a tree of devices with scattered ?*/ -~
logic which is hard to understand SeavencerPardA
SEQ]
| CAP
kickofRQ) kickofRQ)
omple,‘te,() c.omPlf;ﬁ)

/'

KickofRQ) 7
COMp!e'te()

v/ Solution: Separate Objects to &@>ivesky

Handle /O

Comms objects PondADevice TriggerablePand 4

> Collectionsof signals

o Async se®l | fm-------- - | Device
Composition over PcAP R kickofPQ ~_
inheritance AN complete® <[

° Better way to handle " . AN common__func()

; ; .
 [revemerett | 7
AN Device /7
Asyncio with aioca for /7
EPICS comms Kickoff)) 7
comple,‘te,()

X Problem: PVs and Pre/Suffixes
are Hard Coded

class CamBase(ADBase):

Shared among all cams and plugins

array_counter = ADCpt(SignalWithRBV, "ArrayCounter")

array_rate = ADCpt(EpicsSignalRO, "ArrayRate_RBV")

asyn_io = ADCpt(EpicsSignal, "AsynlO")

nd_attributes_file = ADCpt(EpicsSignal, "NDAttributesFile", string=True)
pool_alloc_buffers = ADCpt(EpicsSignalRO, "PoolAllocBuffers")
pool_free_buffers = ADCpt(EpicsSignalRO, "PoolFreeBuffers")
pool_max_buffers = ADCpt(EpicsSignalRO, "PoolMaxBuffers")
pool_max_mem = ADCpt(EpicsSignalRO, "PoolMaxMem™")
pool_used_buffers = ADCpt(EpicsSignalRO, "PoolUsedBuffers")
pool_used_mem = ADCpt(EpicsSignalRO, "PoolUsedMem™")
port_name = ADCpt(EpicsSignalRO, "PortName_RBV", string=True)

V' Solution: Separate Definitions @lvesky

and Option for PVI

New component: SignalCollector, to provide signal definitions

Multiple implementations:
° Hard-coded

° Naming convention
° PVI
> Databases

Q)Iueskg

Current Status

Early alpha

. . . S~ v *»7,
Scan modelling library: https://github.com/dls- —_ T -
controls/scanspec == L
Currently being merged into Ophyd repository, S

ophyd.v2 package 9 \ . =

\\—»,,>,. 0
Issue currently open to update build system:
https://github.com/bluesky/ophyd/issues/1059 O e N

Device repositories: | \\\

o https://github.com/bluesky/ophyd-tango-devices

o https://github.com/bluesky/ophyd-epics-devices

https://github.com/dls-controls/scanspec
https://github.com/bluesky/ophyd/issues/1059
https://github.com/bluesky/ophyd-tango-devices
https://github.com/bluesky/ophyd-epics-devices

Q)Iueskg

Summary

Ophyd v2 developed to replace Ophyd and Malcolm

Incorporates lessons learned from Ophyd v2 (NSLS-11) and fly scanning functionality from
Malcolm (Diamond)

Can run Ophyd v1 and Ophyd v2 devices concurrently
Clear migration path
Jointly developed by the two facilities, bi-weekly call

Also regular representation from:
o PS|
o Kyle Sunden & Blaise Thomson, UW Madison

https://github.com/bluesky/ophyd/issues/1059

https://github.com/bluesky/ophyd/issues/1059

