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What is Zocalo?

Data analysis infrastructure

• Recipes

• Services

• Wrappers

Communication via

• Transport layer

• Message broker
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What can it do?

Offline analysis



Message brokers



Message broker

• RabbitMQ (or ActiveMQ)

• Manages a set of queues to which applications can connect in order 
to send or receive messages



Message broker – why?

• Asynchronous (delayed) message delivery

• Distribute a message to multiple consumers

• Balance loads between multiple worker processes

• Reduced coupling between senders and receivers

• Improved fault tolerance



RabbitMQ

• Wide user base

• Open development model

• Excellent resources for users and administrators

• Flexible messaging topology 

• Redundant cluster of three RabbitMQ servers on real machines



Zocalo components



Workflows: transport layer

• Abstraction on top of message broker

• Implements PikaTransport (RabbitMQ/AMPQ) and 
StompTransport (ActiveMQ/STOMP)

• Services and wrappers send and receive messages via the 
workflows transport layer rather than interacting directly with the 
message broker



Workflows: services

• A service consumes messages from a queue, performing some action 
based on the incoming message

• Optionally sends output to another queue

• Suitable for discrete short-lived tasks, e.g. spotfinding on an individual 
image or inserting results into a database

• Long-running background processes that wait for work

• Zocalo itself agnostic to where or how the services are run

• At DLS majority of services now running on Kubernetes



Zocalo: wrappers

• Used for longer-running tasks, e.g. data processing programs like xia2 
or fast_ep

• Only run when needed (typically on in-house cluster or STFC Cloud)

• Wrap something that isn’t necessarily aware of zocalo

• A typical wrapper:
• Takes an input message

• Converts to suitable command line input

• Runs the software

• Interprets the results into an onward message to send back to Zocalo



Services and wrappers - now what?

• How to link them together?

• Queue a given service 
consumes from is well-
defined

• Where should a service send 
output to?



Services and wrappers - now what?



Workflows: recipes

• A recipe encodes the connections 
between services and wrappers

• Services are connected in a directed 
acyclic graph

• Nodes correspond to services

• Directed edges represent connections 
between services

• Nodes have one or more input

• Nodes can have zero, one or many 
outputs



Workflows: recipes

A recipe can be represented as a Python dictionary:

{
1: { (..), 'output': 2, (..) },
2: { (..), 'output': 3, (..) },
3: { (..) },
(..)
'start': [ (1, 'some data'), (2, { 'this can also be': 'a data structure' }) ]

}



X-ray centring



Per-image analysis



Where do the services run?



Kubernetes

• Open-source system for automating deployment, scaling, and 
management of containerized applications

• Control and automate application deployments and updates

• Declarative deployment pattern

• Automated rollouts and rollbacks

• Self-healing – automatic restarts of failing containers

• Auto-scaling of applications

• Service discovery



Zocalo on Kubernetes



Zocalo helm chart



Monitoring
Is everything OK?



Monitoring

• Take advantage of popular open-source 
monitoring tooling
• Prometheus/Alertmanager/Grafana

• Highly configurable alerts via email/slack

• Intelligent grouping of alerts

• Running Zocalo services on Kubernetes 
provides Prometheus service discovery “for 
free”

• Grafana dashboard displaying current and 
historic metrics
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Availability

https://github.com/DiamondLightSource/python-zocalo

https://github.com/DiamondLightSource/python-workflows

https://zocalo.readthedocs.io/

$ conda install -c conda-forge zocalo

$ pip install zocalo

https://github.com/DiamondLightSource/python-zocalo
https://github.com/DiamondLightSource/python-workflows
https://zocalo.readthedocs.io/

