Zocalo: a high-throughput data processing framework

NOBUGS 2022

Richard Gildea

Outline

- What is Zocalo?
- What can it do?
- Message brokers/RabbitMQ
- Zocalo components
- Where do things run?
- Monitoring

What is Zocalo?

What is Zocalo?

Data analysis infrastructure

- Recipes
- Services
- Wrappers

Communication via

- Transport layer
- Message broker

What can it do?

Online analysis

What can it do?

Online analysis

What can it do?

Offline analysis

Message brokers

Message broker

- RabbitMQ (or ActiveMQ)
- Manages a set of queues to which applications can connect in order to send or receive messages

Message broker – why?

- Asynchronous (delayed) message delivery
- Distribute a message to multiple consumers
- Balance loads between multiple worker processes
- Reduced coupling between senders and receivers
- Improved fault tolerance

RabbitMQ

- Wide user base
- Open development model
- Excellent resources for users and administrators
- Flexible messaging topology
- Redundant cluster of three RabbitMQ servers on real machines

Zocalo components

Workflows: transport layer

- Abstraction on top of message broker
- Implements PikaTransport (RabbitMQ/AMPQ) and StompTransport (ActiveMQ/STOMP)
- Services and wrappers send and receive messages via the workflows transport layer rather than interacting directly with the message broker

Workflows: services

- A service consumes messages from a queue, performing some action based on the incoming message
- Optionally sends output to another queue
- Suitable for discrete short-lived tasks, e.g. spotfinding on an individual image or inserting results into a database
- Long-running background processes that wait for work
- Zocalo itself agnostic to where or how the services are run
- At DLS majority of services now running on Kubernetes

Zocalo: wrappers

- Used for longer-running tasks, e.g. data processing programs like xia2 or fast_ep
- Only run when needed (typically on in-house cluster or STFC Cloud)
- Wrap something that isn't necessarily aware of zocalo
- A typical wrapper:
 - Takes an input message
 - Converts to suitable command line input
 - Runs the software
 - Interprets the results into an onward message to send back to Zocalo

Services and wrappers - now what?

- How to link them together?
- Queue a given service consumes from is welldefined
- Where should a service send output to?

Services and wrappers - now what?

Workflows: recipes

- A recipe encodes the connections between services and wrappers
- Services are connected in a directed acyclic graph
- Nodes correspond to services
- Directed edges represent connections between services
- Nodes have one or more input
- Nodes can have zero, one or many outputs

Workflows: recipes

A recipe can be represented as a Python dictionary:

```
{
  1: { (..), 'output': 2, (..) },
  2: { (..), 'output': 3, (..) },
  3: { (..) },
  (..)
  'start': [ (1, 'some data'), (2, { 'this can also be': 'a data structure' }) ]
}
```


X-ray centring

Where do the services run?

Kubernetes

- Open-source system for automating deployment, scaling, and management of containerized applications
- Control and automate application deployments and updates
- Declarative deployment pattern
- Automated rollouts and rollbacks
- Self-healing automatic restarts of failing containers
- Auto-scaling of applications
- Service discovery

Zocalo on Kubernetes

Zocalo helm chart

Monitoring

Is everything OK?

Monitoring

- Take advantage of popular open-source monitoring tooling
 - Prometheus/Alertmanager/Grafana
- Highly configurable alerts via email/slack
- Intelligent grouping of alerts
- Running Zocalo services on Kubernetes provides Prometheus service discovery "for free"
- Grafana dashboard displaying current and historic metrics

Acknowledgments

Nick Devenish

Irakli Sikharulidze

Graeme Winter

Ben Williams

Markus Gerstel

Dan Hatton

Anna Horstmann

Jacob Filik

Abi Emery

Chris Reynolds

Thomas Hartland

Richard Parke

Availability

```
https://github.com/DiamondLightSource/python-zocalohttps://github.com/DiamondLightSource/python-workflowshttps://zocalo.readthedocs.io/
```

```
$ conda install -c conda-forge zocalo
$ pip install zocalo
```

