Integrated Real-Time Auto-Processing at Diamond Light Source

J. Filik, D. Keeble, J. Hall, K. Levik, P. Chang, R. Gildea, T. Snow, S. Maheswaran

Introduction

Things used to be both harder and easier...

...Now they are both easier and harder.

Challenges

- Many Beamlines
- All the 4 V's of Big Data
- Driven by relatively uniform systems
 - EPICS + GDA
 - NeXus/HDF5
- Analysis less so...
 - XRD != SAXS != XPDF != XES != XRF != STXM != Ptychography != Tomography....
 - Sometimes best analysis code not developed in-house
 - Faster Experiments -> "Raw-er" data -> more post-processing required
 - Hard work for beamline staff and users

Target Beamline UX

- Experiment/Measurement/Scan triggered
- Start triggers real-time processing for live experiment feedback
 - Raw and Processed data visible during scan
 - (Feedback from real-time processing guides acquisition)
- At end of scan (or live processing), down-stream processing starts
 - Notification of additional processing sent
 - Results of down-stream processing available
- All Results + Provenance visible in LIMS system and (where appropriate) acquisition software
 - Because just generating more files is not good enough need to see the results
- Ideally, triggering of reprocessing through the same system (SaaS)
- Basically, like an MX experiment...

Available Infrastructure

- Acquisition System
- Access to Metadata/Data
- Access to Compute
- Auto-processing Launcher
 - And applications to actually perform the processing...
- Laboratory Information Management System (LIMS)
- Mechanisms for all the above to work together!

Behind the scenes...

Scan Configuration...

On The Beamline...

118 - The Micro-Focus Beamline

• ...the analysis of heterogeneous materials in all fields of science in microscopic detail

XRF and XRD mapping, XRF and XRD tomography, XAS and XANES

mapping (+ optical microscope)

XRF @ 1 kHz (8 x 4K channels – Xspress3)

• XRD @ 100 Hz (3.7 Mpixel – Excalibur)


```
In [1]:
```

```
# Parameters
element_list = "C-Ka Co-Ka Fe-Ka Ni-Ka Zn-Ka"
window_width = 40
inpath = "/dls/i18/data/2022/cm31141-4//i18-190813.nxs"
outpath = "/dls/i18/data/2022/cm31141-4/processed/i18-190813_xrf.nxs"
```


Key Components...

Live Processing using SWMR

- NeXus tagging used for metadata
- DAWN or SWMRtools (python)
- High performance SWMR not completely trivial...
- For write performance data is Blosc compressed, direct-chunk written
 - Either with or without Virtual Dataset (VDS)
- Best read performance using direct-chunk read
 - Need to then decompress
 - Fast small reads/writes can slow file writer (on GPFS @ 1kHz)
 - VDS not chunked need to access the source datasets
- With this can read fast in a single process
 - currently benchmarking direct chunk read -> blosc -> pyFAI on GPU for real time XRD

GDA-Zocalo-Connector (Autoprocessing Launcher)

- Subscribes to GDA scan messages
- Unpacks metadata from NeXus
 - Record ISPyB DataCollectionGroup/DataCollection
- Determines default processing
 - Beamline name and NeXus structure
 - i.e. If B18 and XAFS -> run Larch
 - Adds to processing request
- Unpacks processing request from scan message
 - Inserts appropriate ProcessingJob/Parameters
 - Submits to Zocalo
- Exposes Processing Types and associated Parameters via REST api
 - For guided configuration in the GDA client

ISPyB/Synchweb/Zocalo

- ISPyB
 - Rich set of tables for structural biology LIMS
 - Some tables contain generic information
 - Allows recording of metadata from scans and auto-processing
 - (and the relationships between them)
- Synchweb
 - Auth/Auth access to ISPyB
 - Visit event view shows generic information
- Zocalo
 - "Runs processing"
 - Integrates with compute and ISPyB

Inside Zocalo...

- Richards Talk...
- For Physical Sciences:
 - Largely applications ran in wrappers
 - Data goes from HDF5 to HDF5
 - DAWN/Savu/Ptypy but also Python using Papermill and Jupyter (which give PyMCA, PyFAI, TomoPy, Larch, Scikit-learn, Scikit-image....)
 - Main benefit of Zocalo is the abstraction around LIMS and HPC

Papermill wrapper

- Template notebook written by Analysis/Beamline/User
- Takes parameters from ISPyB database
- Papermill Injects params into a template Jupyter notebook
- Executes notebook in the specified python environment (currently using Module and Conda)
- Broadcasts the result files back to zocalo for further processing
- Basic visualisation and provenance

```
i18-190813_xrf.html Log File

In [1]: # Parameters
    element_list = "C-Ka Co-Ka Fe-Ka Ni-Ka Zn-Ka"
    window_width = 40
    inpath = "/dls/i18/data/2022/cm31141-4//i18-190813.nxs"
    outpath = "/dls/i18/data/2022/cm31141-4/processed/i18-190813_xrf.nxs"
```


2.0

2.5 3.0 3.5

XRD-Tomography

100

200

300

400

100

200

300

- 2D Scan of stage_x, stage_theta
- Live reduction of data with PyFAI
- Post-reduction reconstruction with TomoPy

Post-reconstruction investigation with Scikit-Learn

Conclusions

- Generic deployment of real-time auto-processing is complicated
- Lots of infrastructure needed
- Making results easily findable is critical
- As is provenance
- Information management systems are key
- Lots of good open-source tools

If you are interested in ptychography there is a PtyPy workshop at DLS 12/13th Jan 2023

