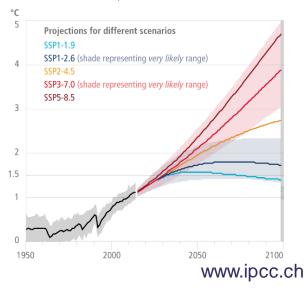


Environmental sustainability for scientific software

Sam Tygier
ICD Environmental Sustainability Working Group


22 Sep 2022

Why

- Things are bad and getting worse
- Passed 1°C warming, 400ppm CO₂
- Staying within CO₂ budgets for 1.5°C needs rapid changes
- Net zero policies: Gov, UKRI, STFC
- ICT ~2-4% of global CO₂ emissions [1] and growing
- Footprint of computing in research is significant and growing [2]

"Today's IPCC Working Group 1 report is a code red for humanity. The alarm bells are deafening, and the evidence is irrefutable: greenhouse-gas emissions from fossil-fuel burning and deforestation are choking our planet and putting billions of people at immediate risk. Global heating is affecting every region on Earth, with many of the changes becoming irreversible."

-- UN Secretary-General António Guterres

UK research's big emitters

Context

JASMIN CO₂: 410 tonnes pa (1.5gWh y-1 + ~ 16% supply chain)

ARCHER
CO₂: 2,200 tonnes
pa (8gWh y-1 + ~
16% supply chain)

NERC SHIPS CO₂: 35,000 tonnes pa

FAAM: 2,400 tonnes pa (fuel only)

STFC ISIS: 24,000 * tonnes pa (88 gWh pa)

---> ARCHER2 : ~ 6,000 tonnes per year

---> Next Generation: ??????

Software + Sustainability

- Will this software project be usable in the future
 - Maintainability, documentation, availability, licensing, standards

• Will there still be an environment to run this software in

· Social, individual, environmental, economic, and technical

- Climate is urgent issue that interacts with all others
- Electricity is the simple bit
 - Easy to measure, easy to switch sources, efficiency gains
 - Still complicated

https://www.software.ac.uk/about https://www.sustainabilitydesign.org/http://arxiv.org/abs/1410.6968

CO₂ footprint of a software engineer

Office

- Heating
- AC

Laptop/Desktop

- Manufacture
- Electricity

Software use

- Hardware
- Electricity
- HPC

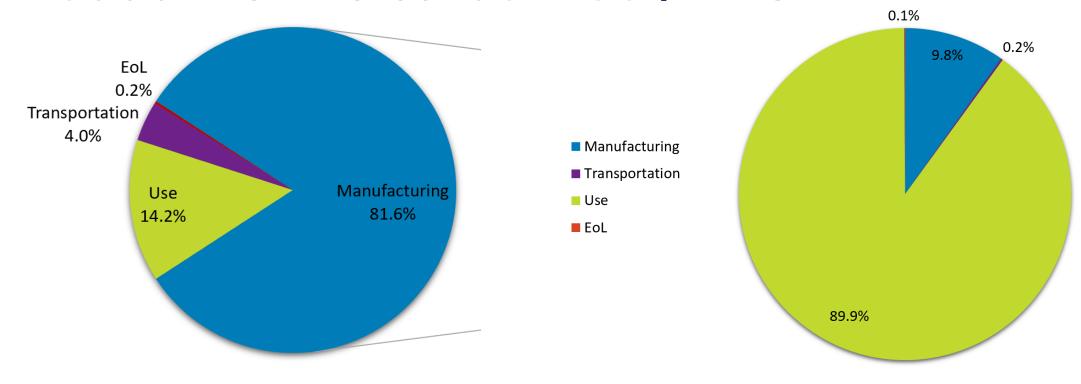
Commuting

Trips

- To labs
- Conferences

Effects of software

- Experiment control
- Experiment design
- Replace physical process
- Science impact
- Societal impact


Dev Infrastructure

- Hosting
- Version control
- Testing/CI
- Local/cloud

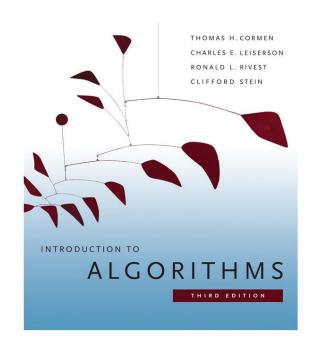
Non-work

- Food
- Home
- Lifestyle

Product lifetime carbon footprints

Dell Precision 5550 Laptop

* Base configs, a big SSD can make a difference


https://corporate.delltechnologies.com/en-us/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm

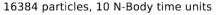
Efficiency

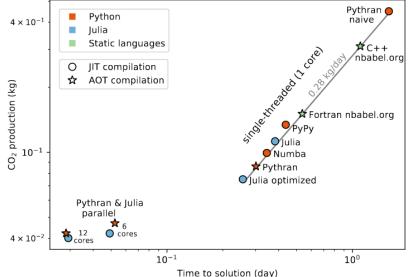
- Energy use = power × time
- Good algorithms & data structures
- Good languages
 - Or optimized libraries
- Avoid un-need work
 - Caching
 - Do you need to invert matrix, sort a list?
 - Loops
 - IO
- Compression

 $O(1) < O(n) < O(n \log n) < O(n^2) < O(2^n)$

http://green-algorithms.org/ https://codecarbon.io/

Should we stop using python?


- Python is slow compared to compiled languages
- For similar code 10-100x more CPU time
- But not hard to make python fast
 - Numpy (or scipp) vs loops
 - Scipy (algors in C/Fortran)
 - Python compilers (cython, numba, pythran, pypy)
 - Call compiled libraries
- 80/20 rule


Don't use raw naïve python implementations of algorithms*

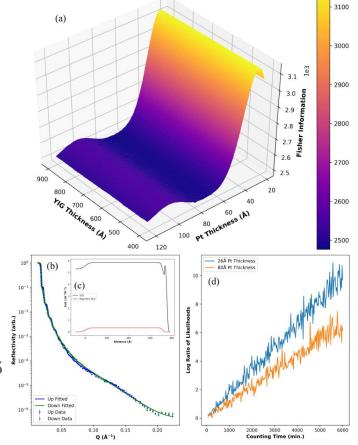
* Most python devs already don't

	Energy		
(c) C	1.00		
(c) Rust	1.03		
(c) C++	1.34		
(c) Ada	1.70		
(v) Java	1.98		
(c) Pascal	2.14		

(i) Lua	45.98
(i) Jruby	46.54
(i) Ruby	69.91
(i) Python	75.88
(i) Perl	79.58

Examples

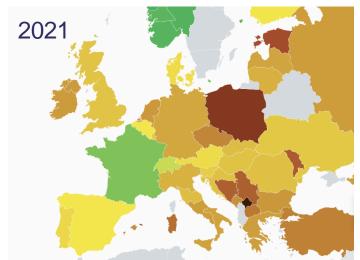
Mantid release notes

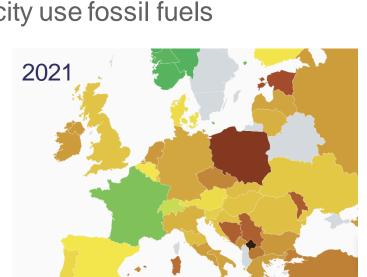

- One big file -> File per change
- Prevents conflicts, extra merges, extra test runs
- Saves CPU and developer time

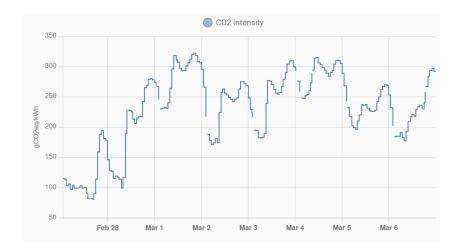
SANS2D tube calibration script

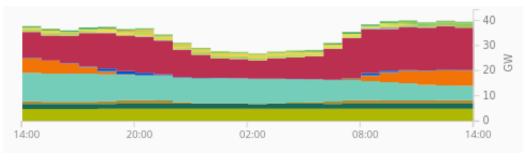
- 30 -> 3 mins per iteration (remove redundant IO)
- No longer need to leave running over night
- Save CPU, research time

Holistic Optimization for Generating Better Experimental Neutrons


- Optimization of neutron reflectometry experiments
- Choose parameters that maximize Fisher information and minimize beam time
- Save beam time, same confidence results 2/3 time

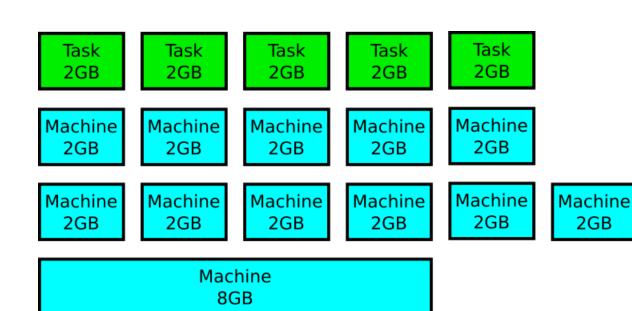





Time/Location shifting

- Carbon intensity of electricity g/kWh
 - Varies by place
 - Time of day, day of week
 - Weather/season
- Demand side response
 - Schedule work based on grid conditions
- Peak load shifting
 - Peaks in electricity use fossil fuels

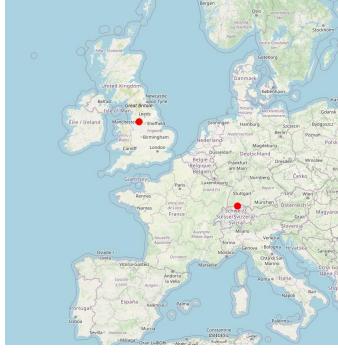
Coal 820 g/kWh 650 Oil Gas 490 Biomass 230 Solar 45 Hydro 24 Nuclear 12 Wind 11


co2signal.com home-assistant.io Electricitymap.org **IPCC**

Infrastructure

- How many machines for X users
- Over and under provisioning
- CPU, RAM, Disk, network, GPU
- Availability
 - 99.999% uptime
 - Ok to wait in a queue
- Containers, VMs
- Resource
 - estimation
 - communication

•••	
Input file	
Param	
Iterations	
	Estimate: 4 hours 200 kg CO2
Eco mode	Estimate: ~ 12 hours 100 kg CO2
	Submit Job


Travel

- Manchester to Zurich 1000 km
- Air 281 kg CO₂e
- My route
 - Train + Night Bus
 - 56 kg CO₂e
 - ~ 20 hour

Remote participants

- ~ 24 hours of HD video
- ~ 24 GB
- ~ 0.36 kWh for networks
- $\sim 0.1 \text{ kg CO}_2\text{e}$

Aviation and Climate Change – the continuing challenge, A. Bows-Larkin - <u>10.1002/9780470686652.eae1031</u> Are technology myths stalling aviation climate policy?, P. Peeters - <u>10.1016/j.trd.2016.02.004</u> Zoom, video conferencing, energy, and emissions – D. Mytton - <u>https://davidmytton.blog/zoom-video-conferencing-energy-and-emissions/</u>

CO2e calculation

• Train + bus

Leg	mode	distance km	co2e kg/km	co2e kg
Manchester → London	Train	265	0.03549	9.40
$London \to Dover$	Coach	126	0.02733	3.44
Dover → Calais	Ferry	40	0.129517	5.18
Calais → Paris	Coach	289	0.02733	7.90
Paris → Brugg	Train	559	0.00446	2.49
Total return				56.8

• Air

Leg	mode	distance km	co2e kg/km	co2e kg
Manchester → Zurich	Air	1000	0.140625	140.63
Total return				281.2

Using UK gov values

https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022

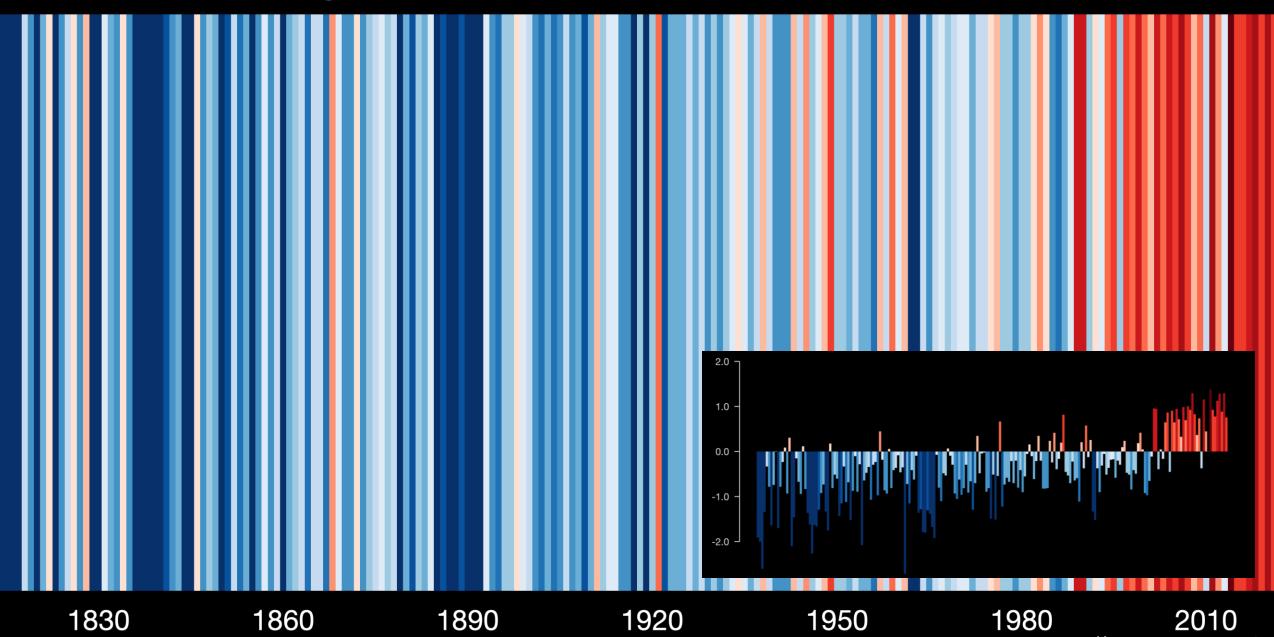
Tips for rail travel

- The Man in Seat Sixty-One https://www.seat61.com/
 - Routes, booking advice
- Train is nicer than bus (but more expensive)
- If you have time take a walk outside the stations
- No silly airport restrictions
 - You can carry water, wine, food, shampoo, Swiss army knife*
- Check time for changes
 - Your travel bookers may not know how long it takes to get from Gare du Nord to Gare de Lyon

Summary

- Big topic Big impacts
- Good software reduces energy consumption
 - Of the software
 - Other processes
- Does it need to run? does it need to run now?
- What resources does it need?
- What can you influence?
- Does you group have a sustainability team?
 - Join it or create it

Thanks



Further reading

- IPCC
 - Reports all have short readable Summary for Policymakers and Headline Statements
- UKRI Net Zero Digital Research Infrastructure Scoping Project
 - https://net-zero-dri.ceda.ac.uk/
- Without the Hot Air books
 - Food (S. Bridle) and Energy (D. MacKay) books free online
- How Bad Are Bananas Mike Berners-Lee

Temperature change in Oxford since 1814

https://showyourstripes.info