

ISIS Neutron and Muon Source

MANTID Imaging

<u>Sam Tygier</u>, Dimitar Tasev, Dolica Akello-Egwel, Rachel Baust, Samuel Jones, Daniel Nixon, Samuel Stock, Will Taylor ISIS STFC

22 Sep 2022

Neutron imaging

IMAT at ISIS

10.1016/j.nima.2018.01.037

Object

Projections

Reconstruction

Tomography

Input: Nexus or TIFF/FITS

- List of 2D images (3D array) ٠
- Projections ۲
- Flat and dark frames .
- 180 projection •
- Reconstructed volume •
- Float32 or Float64
- 2k x 2k x 1.5k (20GB)

Output: TIFF/FITS (Nexus soon)

- **3D** voxels
- Attenuation coefficient

- **Filtered Back Projection** (FBP) ٠
 - ASTRA ۲
 - GPU •
- **Simultaneous Iterative** • **Reconstruction Technique** (SIRT)
 - ASTRA •
 - GPU •
- **Total Variation with Primal-Dual** • **Hybrid Gradient** (TV-PDHG)
 - Core Imaging Library ٠
 - GPU •
 - Resilient to noise
 - Gridrec

٠

- TomoPy ۲
- CPU

*Wikipedia: Prolineserver

MANTID Imaging

User friendly interface for neutron imaging

Image data from experiments

Apply preprocessing

Tomographic reconstruction

Distinct from Mantid: No shared code

Features

High performance UI

Preprocessing

•

•

•

- **Crop Coordinates** Median
- Flat-fielding

۰

٠

- **Remove Outliers**
 - **ROI** Normalisation Rescale
- Circular Mask
- **Clip Values**
- Arithmetic .
- Gaussian ٠

Tomographic Reconstruction

•Astra:

•FBP CUDA - Filtered Back Projection •SIRT_CUDA - Simultaneous Iterative **Reconstruction Technique**

TomoPy

•Gridrec •Core Imaging Library – CCPi •TV-PDHG - Total Variation with Primal-Dual Hybrid Gradient

- •
- **Ring Removal Rotate Stack** •

Rebin

Stripe Removal

Monitor Normalisation

Development

Your Workspaces

Science and Technology Facilities Council

python

powered

TomoPy

m Dan William

Dan William Samue Nixon Taylor Stock \mathbf{O}

a mantidproject / mantidimagin <> Code () Issues 36 11 Pull requests 2 Discussions រះ master 🗸 Go to file Add file -Graphical toolkit for × yesterday 🕲 3,161 DolicaAkelloEgwel Merge pull request #861 fro. neutron imaging emove leftover curly braces in git pr Use environment-dev.yml for conda gith. 5 days ago .github 2 months add .vscode Fix test expectation Readme huildscript Move Jenkinsfile to buildscripts directory 3 years ago GPL-3.0 License 53 conda Merge branch 'master' into update pyth .. 2 months ag Set url in dockerfile to master docker vesterda Releases docs Update documentation for new depende. vesterda 🕟 Mantid Imagi Move icons to qui/ui/images 2 months ago images on 15 Jan mantidimaging Merge pull request #856 from mantidpr 7 days ago + 4 release

Pulls Issues Marketplace Explore

🛆 + 🕶 😥

Agile development Test driven Continuous integration Open Source (GPL3) Close partnership with users Regular releases

ISIS Computer Division Scientific Software Data Reduction Imaging team

Currently 3 core developers

Built on strengths of existing tools

CuPv

Iomographic

Imaging

History

- 2015: Initially part of Mantid, C++ GUI
- 2017: Extracted from Mantid and rewritten as a Python GUI
- 2019: Effort picked up, as Octopus* replacement for IMAT
- 2021 Jan: 2.0 first end user release
- 2021-22: 2.1 -> 2.4 Releases

Used by IMAT until 2021 Commercial tomograph package End of Life start of 2021 Proprietary restrictive licence

2021

2022

Release 2.0

- First end user release
- Tomography workflow for IMAT

Release 2.1 Usability improvements

- New user wizard
- Better histograms
- Auto colouring
- Drag and drop loading
- Fixed many annoyances

Release 2.2 New features

- TV-PDHG reconstruction (Core Imaging Library)
- Nexus loading
- Filter improvements

Release 2.3 GUI improvements

- Dataset viewer
- Bad data indicators & overlays
- Beam hardening correction

Release 2.4

- Windows support
- Auto-sinograms
- Nexus output
- Line profiles
- Spectrum viewer
- Non-negativity constraint

Recon: 0.000918

Bad data handling

- Bad pixel values
 - Missing/corrupt data
 - Noise
 - Artefacts from preprocessing
- Finding
 - Warnings
 - Overlays
- Fixing
 - Keep user in control
 - Tools to fix
 - Might indicate problem at collection
- Before reconstruction

Sustainability

- Advanced reconstruction algorithms
 - Total Variation with Primal-Dual Hybrid Gradient (TV-PDHG) - Core Imaging Library
 - More robust
 - Noise
 - Reduced projection angles
- Golden angle scanning
 - Normal: Step = 360°/N
 - Golden: Step = 137.508°
 - Allows stopping a scan after any number of projections
- Improving testing/benchmarking
 - Allows optimising algorithms

Future

Tomography

- 1. Energy-selective tomography
 - Select several energy bands
 - Reconstruct
- 2. Energy-resolved tomography 3D
 - Spectrum to scalar quantity
 - Reconstruct in scalar
- 3. Energy-resolved tomography 4D
 - Reconstruct each energy slice
 - Analysis spectrum of each voxel

Energy resolved imaging

- TOF gives energy
- Can record absorption spectrum at each pixel
- Sensitive to
 - Resonances peaks
 - Bragg edges material, concentration, temperature, strain, texture
 - Large increase in data sizes
 - Ongoing investigation into options
 - Tomography driven diffraction
 - Cross platform
 - Image stitching
 - New algorithms
 - New data format support
 - GUI/visulisation improvements

Summary

- User friendly GUI for neutron imaging and tomography
- Ready to use
- Being used by IMAT at ISIS
- Range of tools and algorithms
 - Preprocessing
 - Tomography
- Agile development, driven by user needs

Science and Technology Facilities Council If you are interested get in touch:

https://github.com/mantidproject/mantidimaging https://doi.org/10.5281/zenodo.4728059 mantidimagingsupport@stfc365.onmicrosoft.com

Science and Technology Facilities Council

Thankyou

Science and Technology Facilities Council

@STFC_Matters

Science and Technology Facilities Council