Polarized diffraction and spectroscopy data reduction in Mantid

Dominik Arominski* and Gagik Vardanyan

Institut Laue-Langevin, Grenoble, France *arominski@ill.fr

Introduction

Polarized neutrons experiments are the only technique allowing to analyze individual contributions from nuclear-coherent, incoherent, and magnetic components of neutron scattering cross-section necessary to study, among others, properties of paramagnetic materials. The new reduction workflow supports monochromatic and single-crystal diffraction, as well as time-of-flight measurements, using Z-only, 6-point, or 10-point component-separation methods. Extensive examples with all relevant mathematics and workflow diagrams are available in Data reduction for D7 instrument at the ILL documentation accessible via Mantid project website.

2. D7 instrument

- General-purpose diffuse scattering spectrometer, always polarised
- Wavelengths available: 3.1, 4.8, and 5.7 Å

D7 instrument layout

3. Reduction workflow

References

- [1] G. Ehlers, J. R. Stewart, A. R. Wildes, P. P. Deen, and K. H. Andersen. Generalization of the classical xyz-polarization analysis technique to out-of-plane and inelastic scattering. Review of Scientific Instruments, 2013.
- [2] Werner Schweika. XYZ-polarisation analysis of diffuse magnetic neutron scattering from single crystals. *Journal of Physics:* Conference Series, 2010.

4. YIG calibration

- ullet Exact λ and bank positions need calibration after each λ change
- \bullet Calibration: 2θ scan of standard YIG sample measurement, well known d-spacing
- Peaks positioned fitted with Gaussians, compared to expected position
- Handled by bespoke Python algorithm D7YIGPositionCalibration

5. Polarised diffraction: powder and single crystal

- Reduction split in two stages: loading + corrections, and component separation + normalisation
- Loading handled by bespoke NeXus C++ loader: LoadILLPolarisedDiffraction
- Corrections: normalisation to monitor/time, background subtraction, polarisation correction, and self-attenuation handled by a Python algorithm PolDiffILLReduction
- Component separation (nuclear coherent, spin-incoherent, paramagnetic) and normalisation to vanadium, incoherent or paramagnetic cross-sections done in a Python algorithm D7AbsoluteCrossSections
- Single crystal reduction uses anisotropic magnetism separation according to Ref. [2]

Ba2MnTeO6 powder sample cross-sections

MnFeP2S6 single crystal total cross-section

6. Polarised spectroscopy

- Same algorithms are used for polarised spectroscopy
- Different corrections: time-dependent background, time-frame overlap, energy efficiency, and elastic peak calibration

Total cross-section of water on ΔE - q plane

7. Conclusions

- A full data reduction implemented for D7.
- The package includes calibration, raw data loading and visualization, and reduction in absolute units.
- Code for D7 will be used as the base for data reduction of D3L and upgraded instrument D007.

