
Minimalist beamline control and experiment software
LIU Yu <liuyu91@ihep.ac.cn>

Institute of High Energy Physics, Chinese Academy of Sciences, People’s Republic of China

NOBUGS 2022 Poster

Introduction
Efforts are being made at the High Energy Photon Source (HEPS) to

systematically approach the complexity lower-bounds both in beamline con-
trol (DOI: 10.1107/S160057752200337X) and in experiment software (DOI:
10.1107/S1600577522002697). This poster gives some representative results,
and highlights additional examples which the author believes to have satisfactorily
approximated the complexity lower-bounds in certain aspects.

Minimalist beamline control
Our packaging system (GitHub: ihep-pkg-ose) creates highly reproducible

packages for EPICS modules covering the full synApps collection, with support
for Rocky Linux 8 added recently. With our Python-assisted inheritance and
metadata generation system, adding an EPICS module to our collection is of-
ten as simple as is shown below, from which the author believes the complexity
lower-bound in EPICS packaging is satisfactorily approximated.

Apart from this .spec file, corresponding entries also need to be added
to misc/SHA512SUMS/main and misc/pkgs/epics (one-line change for each).
%define repo ADmarCCD
%define commit 8f62ac54
%{meta name license=EPICS github=areaDetector version=2_3,2.commit}
Summary: EPICS - Rayonix MarCCD detectors
%{inherit ad + deps}
%description
%{inherit ad}

EPICS applications involving multiple support modules are traditionally im-
plemented by self-built IOC executables that depend on these modules, but a
majority of them can also be done by using multiple single-module IOCs simulta-
neously. Along with the support modules, provided in our packages are reusable
modular IOCs that can be fed with application-specific cmds, dbs and ancillary
data, which we conventionally put in ~/iocBoot (see below). With extensive use
of these IOCs, we can dramatically reduce the need for self-built IOCs, reducing
the workload in creating and maintaining the corresponding applications by 1–2
orders of magnitude. This also enables highly maintainable accommodation of
most IOCs on a beamline on just a few computers with very modest hardware.

#!/bin/sh -e
Loads config from ${HOME}/iocBoot/${IOC} instead of ${TOP}/iocBoot/${IOC}.
cd /opt/epics/StreamDevice/iocBoot/iocThermo
exec ../../bin/linux-x86_64/streamApp ~/iocBoot/iocThermo/temp18c.cmd

#!/bin/sh -e
Useful supports, like autosave and iocStats, are added to reusable IOCs.
cd ~/iocBoot/iocSoft
exec softIoc -m 'C=BL3W1:,M=mono:,SCAN=1 second,IOC=BL3W1:Stats:mono:' \

-d mono.db -d /opt/epics/iocStats/db/iocAdminCore.db

#!/bin/sh -e
Subdirectories under `iocs' are moved to ${SUPPORT} automatically by
the packaging system for all motor and areaDetector modules, so no more
/opt/epics/areaDetector/ADXspress3/iocs/xspress3IOC/iocBoot/iocXspress3.
cd /opt/epics/xspress3IOC/iocBoot/iocXspress3
exec ../../bin/linux-x86_64/xspress3AppQD ~/iocBoot/iocXspress3/st.cmd

Efforts are also made to simplify EPICS modules’ codebases. For example,
the module for Xspress3 contains a lot of code duplicated for each (number of
boxes, number of channels) combination configured upstream, most of them gen-
erated with the iocbuilder utility (of thousands lines of code), leading to great
difficulty for an outsider to create an IOC for a new combination. The author re-
duced the amount of these code to a minimum that does not harm clarity (GitHub:
ADXspress3); the code generator, xsp3-chan.sh, is only about 20 lines of code.
A way to configure ADXspress3 is shown below.

Assuming the number of channels is 4.
$ mkdir -p ~/iocBoot/iocXspress3 && cd ~/iocBoot/iocXspress3
$ cp -r /etc/xspress3/calibration/initial/settings cfg-4ch
Under xspress3IOC/iocBoot are also iocXsp3QD and iocXsp3CARS.
By using the same technique used in refactoring code from the
upstream, compatibility with the upstream is ensured at minimised
cost. (A paper is being written to discuss this technique.)
$ cd /opt/epics/xspress3IOC/iocBoot/iocXspress3
$ cp st.cmd ~/iocBoot/iocXspress3
$ cd ~/iocBoot/iocXspress3 && $OLDPWD/xsp3-chan.sh 4
Edit ~/iocBoot/iocXspress3/st.cmd: change ${XSP3CARDS}/${XSP3CHANS},
and change the last $(TOP)/iocBoot/$(IOC) to $(HOME)/iocBoot/$(IOC).

Minimalist experiment software

Mamba, our beamline software framework at HEPS, uses Bluesky’s ophyd
for device abstraction and RunEngine for experiment orchestration. To address
Bluesky’s lack integrated GUIs, Mamba uses command injection and other RPCs,
all based on ZeroMQ/JSON, to enable the GUIs and Bluesky-powered command
line to complement each other constructively (see below). The HEPS experiment
software group is also developing Mamba Data Worker (MDW), a versatile frame-
work to implement full-fledged graphs of modular data pipes, that will meet the
diverse needs in beamline experiments.

pexpect

IPython

RPC thread

Status information

Output to
the console

Input from
the keyboard

Other clients for
command injection

Command injection
from RPCs

RPC service

RPC clients
(eg. GUIs)

Experiment parameter generators (EPGs) are a crucial idea in Mamba, which
abstract irrelevant or repetitive details on multiple levels: developers, beamline sci-
entists, experiment users. We recently developed an EPG for PandABox-based fly
scans (with a paper being written); the author believes that for fly-scan solutions
of comparable flexibility, the codebase of this EPG is satisfactorily minimised. It
is based on an ophyd module that implements full control of PandABox’s TCP
server (through pandablocksclient.py from pymalcolm) in less than 400 lines;
the code below shows the sequencer table used by the EPG.

table = dict([
("trigger", ["POSA>=POSITION", "POSA>=POSITION",

"POSA<=POSITION", "POSA<=POSITION"]
if pad > 0.0 else ["POSA<=POSITION", "POSA<=POSITION",

"POSA>=POSITION", "POSA>=POSITION"]),
("position", [lo, hi + pad / 2, hi, lo - pad / 2]),
("time1", [live, 0, live, 0]), ("time2", [dead, 1, dead, 1]),
("repeats", [num, 1, num, 1]), ("outa1", [1, 0, 1, 0])

] + [(f, [0] * 4) for f in seq_outs_not(["outa1"])])
if not snake:

table = dict((k, [v[0], v[3]]) for k, v in table.items())
D.panda = PandaDevice("192.168.1.11", name = "D.panda")
D.panda.seq1.table.set(table).wait()
print(D.panda.seq1.table.value.get())

Based on the ophyd module above, our EPG implements constant-speed map-
ping fly-scans of various dimensions in less than 200 lines, taking care of the con-
figuration of “PandA Blocks” needed for such scans; it is also easily extensible
to more advanced fly scans, like those with variable-speed or irregular trajecto-
ries. Shown first below is the Bluesky plan provided to users by the EPG, in
comparison with its step-scan counterpart; underlying it are modules that can be
composed by beamline scientists to implement scans deliberately fragmented to
overcome hardware limits: like Xspress3’s limit on the number of frames in one
exposure series, or PandABox’s limit on the number of sequencer entries.

RE.subscribe(mdw_stepscan_callback)
RE(grid_scan([D.xsp3, D.cnt974a], M.m2, -1, 1, 3, M.m1, -4, 4, 5))
RE.subscribe(mdw_flyscan_callback)
RE(fly_demo(0.5, M.m2, -1, 1, 3, M.m1, -4, 4, 5, period = 0.5))

def fly_frag(panda, adp, dets, frag_gen, frag_wrap): ...
def frag_simple(panda, div, duty, *args, period = ..., ...): ...
def fwrap_adtrig(ads): ...
fly_demo = lambda duty, *args, **kwargs: \

fly_frag(D.panda, D.adp, [D.xsp3],
frag_simple(D.panda, 12216 // args[-1], duty, *args, **kwargs),
fwrap_adtrig([D.xsp3]))

Currently, additional settings like callbacks, metadata parameters,
progress notification parameters are injected (or written) like
RE(fly_demo(0.5, M.m2, -1, 1, 3, M.m1, -4, 4, 5, period = 0.5,

progress = U.progress), cb_gen("fly_demo"), md = U.mdg.read_advance())
We are now developing further abstractions to encapsulate these code,
so that the frontend (or the user) may simply run
P.fly_demo(0.5, M.m2, -1, 1, 3, M.m1, -4, 4, 5, period = 0.5)

https://journals.iucr.org/s/issues/2022/03/00/gy5033/index.html
https://journals.iucr.org/s/issues/2022/03/00/yn5087/index.html
https://github.com/CasperVector/ihep-pkg-ose
https://github.com/CasperVector/ADXspress3

	Introduction
	Minimalist beamline control
	Minimalist experiment software

